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Figure 1. Points Reprojection and Image Recovery Example.

1. Training and Evaluation Details
Dataset Generation. The training data generation process
for MegaDepth [7] follows the methodology outlined in
GoMatch [13]. The undistorted SfM model reconstructions
used in MegaDepth are provided by D2Net [4]. For training,
we sample up to 500 images from each scene. For each
sampled image, we select the top-k co-visible views that
have at least 35% image overlap. This ensures that there
are enough matches for training. The overlapping score is
computed by dividing the number of co-visible 3D points by
the total number of points in the training image.

In the case of ScanNet [3], a similar procedure is con-
ducted. We also sample up to 500 images from each scene
for the training set generation. The co-visible images are ob-
tained using the co-visible scores provided by LoFTR [12].
We extract all the co-visible views of a training image with
co-visible scores larger than 0.65. Then, we randomly sam-
ple the top-k views for training. Since ScanNet is an RGB-D
dataset without an SfM reconstruction, we obtain the 3D
points for each image by projecting the detected 2D key-
points with valid depth to 3D. By doing this for each image,
we reconstruct a sparse 3D point cloud based on the de-
tected 2D keypoints. Note that the correspondence between
different co-visible frames is not required in this case.

In total, for MegaDepth, we generate a training set con-
sisting of 25,624 images from 99 scenes and a test set com-
prising 12,399 images covering 53 scenes. For ScanNet, we
create a training set with 52,008 images from 105 scenes.
The test set for ScanNet consists of 14,892 query images
from 30 scenes. The data generation of 7Scenes [10] and
Cambridge dataset [6] follows the same procedure in [13].
Inference. We consider a query with at least 10 keypoints as
valid input. The 3D points from the top-k retrieved database

Method
Reprojection InvSFM [9]

Points Points+RGB Points Points+RGB Points+SIFT

SSIM (↓) 0.240 0.258 0.352 0.375 0.476

Table 1. SSIM Results. We evaluate the SSIM from Point Repro-
jection and Image Recovering, adding RGB to points leads only to
a slight SSIM increase on both reprojection and image recovery.

images are then applied to match against the queries with our
proposed pipeline. We use the Sinkhorn algorithm [2, 11]
to optimize the extended cost matrix M̄ ∈ RN+1,M+1 in
an iterative manner with up to 20 iterations to obtain the
initial matches. The final matches are obtained by filtering
the matches with matching confidence θ < 0.5 in the outlier
rejection module. For the visual localization task, the camera
poses are estimated by the P3P solver with RANSAC [5]
implemented in OpenCV [1] and then refined by Levenberg-
Marquardt [8] algorithm on the inliers matches, minimizing
the reprojection error.

2. Privacy Issue of RGB Points
We investigate the impact on privacy resulting from incorpo-
rating RGB information into pixels and points. To assess this,
we compute the Structural Similarity Index Measure (SSIM)
for 3D points reprojected onto the image plane against the
ground truth (GT) images on MegaDepth over 500 images
from multiple scenes. Additionally, we recover the images
from points + RGB and points + descriptors with InvSFM [9]
to calculate the SSIM against the GTs. The findings are de-
tailed in Table 1 and Fig 1. The addition of RGB data to
points results in only a marginal increase in SSIM for both
direct reprojection and image reconstruction via InvSFM,
significantly less than what is achieved by incorporating
SIFT descriptors. It is worth noting that denser point clouds
might provide sufficient context, potentially leading to pri-
vacy concerns. However, in our setting, we mitigate this
risk by limiting the number of keypoints from each database
image to a maximum of 1024.

3. Additional Results
Qualitative Results. More visualizations of inlier matches
provided by DGC-GNN and GoMatch on MegaDepth are
shown in Fig. 2. DGC-GNN consistently finds more correct
matches on multiple scenes, highlighting the effectiveness
of the proposed method.
Additional Ablation Results. In addition to the ablation re-



Methods Global C. Att. Color Ang. Cluster
Reproj. AUC (%) Rotation (◦) Translation

@1 / 5 / 10px (↑) Quantile@25 / 50 / 75% (↓)

GoMatch [13] (w/o OR) 4.47 / 17.95 / 23.42 1.29 / 11.85 / 33.60 0.11 / 1.18 / 3.58

GoMatch [13] 5.67 / 22.43 / 28.01 0.60 / 10.08 / 34.63 0.06 / 1.06 / 3.73

Variants

G.Emb K-means 7.68 / 28.41 / 34.36 0.28 / 6.78 / 34.52 0.03 / 0.73 / 3.77

G.Label ! K-means 7.13 / 27.33 / 33.18 0.31 / 7.34 / 33.63 0.03 / 0.76 / 3.64

G.Emb ! K-means 8.10 / 30.64 / 37.07 0.24 / 4.48 / 34.30 0.03 / 0.63 / 3.51

G.Emb ! ! K-means 9.82 / 35.29 / 41.16 0.17 / 2.88 / 31.74 0.02 / 0.27 / 3.24

G.Emb ! ! ! Mean-shift 10.07 / 36.01 / 43.03 0.16 / 2.15 / 28.99 0.01 / 0.20 / 3.26

DGC-GNN (w/o OR) G.Emb ! ! ! K-means 8.56 / 30.79 / 37.03 0.22 / 4.85 / 30.07 0.02 / 0.47 / 3.10

DGC-GNN G.Emb ! ! ! K-means 10.20 / 37.64 / 44.04 0.15 / 1.53 / 27.93 0.01 / 0.15 / 3.00

Table 2. Additional Ablation Results. AUC scores thresholded at 1, 5, and 10 pixels on k = 1; rotation and translation error quantiles at 25,
50, 75% with the proposed components added one by one to the GoMatch pipeline.

sults presented in the main paper, we also provide ablation re-
sults for single-view matching with k = 1 on MegaDepth [7].
Furthermore, we conduct two additional ablations to investi-
gate the impact of different component selections. Firstly, we
compare the effectiveness of the geometric global embedding
(G. Emb.) used in the main paper with the global clustering
label embedding (G. Label). Instead of encoding geometric
cues, we encode the label of each global cluster and con-
catenate it to the local point feature. Then, we explore the
selection of different clustering algorithms. We compare the
performance of K-Means and Mean-Shift clustering algo-
rithms in our pipeline. Last, we study the effectiveness of
the outlier rejection (OR) network.

The results are presented in Table 2. We observe sim-
ilar conclusions for each component as in the main paper.
The results obtained using the global label embedding (G.
Label) with cluster attention (C.Att) show even worse perfor-
mance compared to geometric embedding (G. Emb.) only,
indicating the superiority of our clustering-based geometric
embedding over the label embedding and highlighting the im-
portance of incorporating geometric cues in the embedding
process for effective point matching. Regarding the impact
of different clustering algorithms, we only observe a minor
difference in K-Means and Mean-Shift results, suggesting
that our approach is robust to the choice of the clustering
algorithm. The results also demonstrate that outlier rejection
is an essential post-processing module to achieve good per-
formance. In addition to the numerical results, we visualize
the inlier matches (see Fig. 3) to provide deep insights into
the behavior and performance of different architectures.

Hyperparameters analysis. Besides the component abla-
tions, we also give an in-depth analysis of the hyperparam-
eters used in our main pipeline. Here, we add additional

ablations on the number of input keypoints, the number of
cluster groups at the coarse level, the number of nearest
neighbors in the local graph build, and the outlier rejec-
tion threshold by retraining our DGC-GNN. The results are
presented in Table 3. We observe that DGC-GNN with G.
Clusters = 10 and Local NN = 10 achieves overall the best
performance. Setting the outlier rejection threshold to 0.7
leads to the best performance. However, the results are stable
across different configurations, indicating robustness to the
parameter setting.

Matching Results in pixel threshold. As mentioned in
the main paper, we selected the ground truth matches in
normalized image coordinates. The described GT difference
only affects the reprojection AUC scores. Here, we present
the matching results in Table 1 by selecting the ground truth
matches in pixel coordinate with 1 pixel threshold as done
in [13]. Our conclusions still hold.

4. Model Parameters and Timing

We discuss the model parameters and running time of DGC-
GNN in this section. DGC-GNN incorporates global geo-
metric embedding and local clustering attention, which has
around 5.7 million trainable parameters and an estimated
model size of 22.6 MB. The average inference time for
each image pair over the Megadepth evaluation queries is
77.8ms. It roughly breaks down into point encoding (24
ms), global geometric embedding (14 ms), cluster-based
attention (22 ms), optimal transport (7 ms), and outlier re-
jection (8 ms). The measurements are conducted on a 32GB
NVIDIA Telsa V100 GPU with a maximum of 1024 key-
points.



Methods G. Cluters Local NN OR Threshold
Reproj. AUC (%) Rotation (◦) Translation

@1 / 5 / 10px (↑) Quantile@25 / 50 / 75% (↓)

DGC-GNN 10 10 0.5 15.30 / 51.70 / 60.01 0.07 / 0.26 / 5.41 0.01 / 0.02 / 0.57

HyperParam.

5 10 0.5 14.73 / 50.12 / 58.26 0.08 / 0.28 / 8.76 0.01 / 0.03 / 0.99

15 10 0.5 15.14 / 50.56 / 58.62 0.07 / 0.28 / 7.66 0.01 / 0.03 / 0.89

10 20 0.5 14.77 / 49.84 / 57.97 0.07 / 0.29 / 8.26 0.01 / 0.03 / 0.90

10 30 0.5 14.75 / 50.95 / 59.45 0.08 / 0.28 / 5.48 0.01 / 0.03 / 0.58

10 10 0.3 13.28 / 46.44 / 55.05 0.08 / 0.43 / 8.63 0.01 / 0.04 / 0.98

10 10 0.7 16.63 / 56.26 / 64.46 0.07 / 0.19 / 2.58 0.01 / 0.02 / 0.27

Table 3. Ablation Study on Hyperparameters. We report the results of ablations with retrieved image k = 10 on the number of global
clusters, the number of nearest neighbour points for local graph build, and different thresholds for outlier rejection. The best results are bold.
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Figure 2. 2D-3D Matching (shown by green lines) with the proposed DGC-GNN and GoMatch [13].



(a) GoMatch (b) +G. Emb, +Cluster Attention

(c) +G. Emb, +Cluster Attention, +Color (d) DGC-GNN

Figure 3. Qualitative Matching Results of Different Architectures. We visualize the number of inlier matches after the PnP-RANSAC
with different architectures (shown by green lines ).
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