
DUSt3R: Geometric 3D Vision Made Easy
Supplementary Material

Figure 1. Example of 3D reconstruction of an unseen MegaDepth
scene from two images (top-left). Note this is the raw output of
the network, i.e. we show the output depthmaps (top-center, see
Eq. (3)) and confidence maps (top-right), as well as two different
viewpoints on the colored pointcloud (middle and bottom). Camera
parameters are recovered from the raw pointmaps, see Sec. 3.3
in the main paper. DUSt3R handles strong viewpoint and focal
changes without apparent problems

Figure 2. Example of 3D reconstruction of an unseen
MegaDepth [17] scene from two images only. Note this is the
raw output of the network, i.e. we show the output depthmaps
(top-center) and confidence maps (top-right), as well as different
viewpoints on the colored pointcloud (middle and bottom). Camera
parameters are recovered from the raw pointmaps, see Sec. 3.3
in the main paper. DUSt3R handles strong viewpoint and focal
changes without apparent problems
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Figure 3. Example of 3D reconstruction from two images only of unseen scenes, namely KingsCollege(Top-Left), OldHospital (Top-
Middle), StMarysChurch(Top-Right), ShopFacade(Bottom-Left), GreatCourt(Bottom-Right). Note this is the raw output of the network, i.e.
we show new viewpoints on the colored pointclouds. Camera parameters are recovered from the raw pointmaps, see Sec. 3.3 in the main
paper.

Figure 4. Example of 3D reconstruction from two images only of unseen scenes, namely Chess, Fire, Heads, Office (Top-Row), Pumpkin,
Kitchen, Stairs (Bottom-Row). Note this is the raw output of the network, i.e. we show new viewpoints on the colored pointclouds. Camera
parameters are recovered from the raw pointmaps, see Sec. 3.3 in the main paper.



Figure 5. Examples of 3D reconstructions from nearly opposite viewpoints. For each of the 4 cases (motorcycle, toaster, bench, stop
sign), we show the two input images (top-left) and the raw output of the network: output depthmaps (top-center) and confidence maps
(top-right), as well as two different views on the colored point-clouds (middle and bottom). Camera parameters are recovered from the raw
pointmaps, see Sec. 3.3 in the main paper. DUSt3R handles drastic viewpoint changes without apparent issues, even when there is almost no
overlapping visual content between images, e.g. for the stop sign and motorcycle. Note that these example cases are not cherry-picked; they
are randomly chosen from the set of unseen CO3D v2 sequences. Please refer to the video for animated visualizations.

https://dust3r.europe.naverlabs.com
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Figure 6. Reconstruction example from 2 images never seen at training time and without any visual overlap. DUSt3R can infer a correct 3D
scene, where the walls, ground floor and ceiling are well aligned together. Note that the inputs are raw photographs that were not rectified.

Figure 7. Reconstruction example from 4 random frames of a RealEstate10K indoor sequence, after global alignment. On the left-hand side,
we show the 4 input frames, and on the right-hand side the resulting point-cloud and the recovered camera intrinsics and poses.



This supplementary provides additional details and qual-
itative results of DUSt3R. We first present in Sec. A quali-
tative pairwise predictions of the presented architecture on
challenging real-life datasets. This section also contains
the description of the video accompanying this material.
We then propose an extended related works in Sec. B, en-
compassing a wider range of methodological families and
geometric vision tasks. Sec. C provides auxiliary ablative
results on multi-view pose estimation, that did not fit in the
main paper. We then report in Sec. D additional results for
the visual localization task, in particular for the case where
the camera intrinsics are unknown. In addition, we also
report the focal length estimation results in Sec. E, abla-
tions of CroCo [65, 66] pretraining and global alignment in
Sec. F. Finally, we provide more details about the global
alignment scheme in Sec. G and about the training and data
augmentation procedures in Sec. H.

A. Qualitative results

Point-cloud visualizations. We present some visualiza-
tion of DUSt3R’s pairwise results in Figs. 1 to 6. Note
these scenes were never seen during training and were not
cherry-picked. Also, we did not post-process these results,
except for filtering out low-confidence points (based on the
output confidence) and removing sky regions for the sake of
visualization, i.e. these figures accurately represent the raw
output of DUSt3R. Overall, the proposed network is able to
perform highly accurate 3D reconstruction from just two im-
ages, even in the complete abscence of overlap between the
images as in Fig. 6. In Fig. 7, we show the output of DUSt3R
after the global alignment stage. In this case, the network
has processed all pairs of the 4 input images, and outputs 4
spatially consistent pointmaps along with the corresponding
camera parameters.

Note that, for the case of image sequences captured with
the same camera, we never enforce the fact that camera
intrinsics must be identical for every frame, i.e. all intrin-
sic parameters are optimized independently. This remains
true for all results reported in this supplementary and in
the main paper, e.g. on multi-view pose estimation with the
CO3Dv2 [35] and RealEstate10K [82] datasets.

Supplementary Video. We attach to this supplementary a

video showcasing the different steps of DUSt3R. In the video,
we demonstrate dense 3D reconstruction from a small set of
raw RGB images, without using any ground-truth camera
parameters (i.e. unknown intrinsic and extrinsic parameters).
We show that our method can seamlessly handle monocular
predictions, and is able to perform reconstruction and cam-
era pose estimation in extreme binocular cases, where the
cameras are facing each other. In addition, we show some
qualitative reconstructions of rather large scale scenes from
the ETH3D dataset [45].

B. Extended Related Work
For the sake of exposition, Section 2 of the main paper
covered only some (but not all) of the most related works.
Because this work covers a large variety of geometric tasks,
we complete it in this section with a few equally important
topics.
Implicit Camera Models. In our work, we do not explicitly
output camera parameters. Likewise, there are several works
aiming to express 3D shapes in a canonical space that is not
directly related to the input viewpoint. Shapes can be stored
as occupancy in regular grids [6, 37, 47, 50, 60, 68, 69],
octree structures [54], collections of parametric surface
elements [10], point clouds encoders [9, 21, 22], free-
form deformation of template meshes [32] or per-view
depthmaps [15]. While these approaches arguably perform
classification and not actual 3D reconstruction [55], all-in-
all, they work only in very constrained setups, usually on
ShapeNet [5] and have trouble generalizing to natural scenes
with non object-centric views [83]. The question of how to
express a complex scene with several object instances in a
single canonical frame had yet to be answered: in this work,
we also express the reconstruction in a canonical reference
frame, but thanks to our scene representation (pointmaps),
we still preserve a relationship between image pixels and the
3D space, and we are thus able to perform 3D reconstruction
consistently.
Dense Visual SLAM. In visual SLAM, early works on
dense 3D reconstruction and ego-motion estimation uti-
lized active depth sensors [27, 59, 80]. Recent works on
dense visual SLAM from RGB video stream are able to
produce high-quality depth maps and camera trajectories
[2, 7, 49, 51, 56, 58], but they inherit the traditional limi-
tations of SLAM, e.g. noisy predictions, drifts and outliers
in the pixel correspondences. To make the 3D reconstruc-
tion more robust, R3D3 [42] jointly leverages jointly multi-
camera constraints and monocular depth cues. Most recently,
GO-SLAM [78] proposed real-time global pose optimization
by considering the complete history of input frames and con-
tinuously aligning all poses that enables instantaneous loop
closures and correction of global structure. Still, all SLAM
methods assume that the input consists of a sequence of
closely related images, e.g. with identical intrinsics, nearby



camera poses and small illumination variations. In compari-
son, our approach handles completely unconstrained image
collections.
3D reconstruction from implicit models has undergone
significant advancements, largely fueled by the integra-
tion of neural networks [18, 26, 30, 64, 75]. Earlier ap-
proaches [18, 28, 30] utilize Multi-Layer Perceptron (MLP)
to generate continuous surface outputs with only posed
RGB images. Innovations like Nerf [26] and its follow-
ups [13, 23, 25, 35, 63, 77] have pioneered density-based
volume rendering to represent scenes as continuous 5D func-
tions for both occupancy and color, showing exceptional
ability in synthesizing novel views of complex scenes. To
handle large-scale scenes, recent approaches [11, 75, 84, 85]
introduce geometry priors to the implicit model, leading to
much more detailed reconstructions. In contrast to the im-
plicit 3D reconstruction, our work focuses on the explicit 3D
reconstruction and showcases that the proposed DUSt3R can
not only have detailed 3D reconstruction but also provide
rich geometry for multiple downstream 3D tasks.
RGB-pairs-to-3D takes its roots in two-view geometry [12]
and is considered as a stand-alone task or an intermediate
step towards the multi-view reconstruction. This process
typically involves estimating a dense depth map and deter-
mining the relative camera pose from two different views.
Recent learning-based approaches formulate this problem
either as pose and monocular depth regression [34, 74, 81]
or pose and stereo matching [52, 57, 59, 62, 79]. The ulti-
mate goal is to achieve 3D reconstruction from the predicted
geometry [1]. In addition to reconstruction tasks, learning
from two views also gives an advance in unsupervised pre-
training; the recently proposed CroCo [65, 66] introduces
a pretext task of cross-view completion from a large set of
image pair to learn 3D geometry from unlabeled data and to
apply this learned implicit representation to various down-
stream 3D vision tasks. Our method draws inspiration from
the CroCo pipeline, but diverges in its application. Instead of
focusing on model pretraining, our approach leverages this
pipeline to directly generate 3D pointmaps from the image
pair. In this context, the depth map and camera poses are
only by-products in our pipeline.

C. Multi-view Pose Estimation
We include additional results for the multi-view pose esti-
mation task from the main paper (in Sec. 4.2). Namely, we
compute the pose accuracy for a smaller number of input
images (they are randomly selected from the entire test se-
quences). Tab. 1 reports our performance and compares with
the state of the art. Numbers for state-of-the-art methods are
borrowed from the recent PoseDiffusion [61] paper’s tables
and plots, hence some numbers are only approximate. Our
method consistently outperforms all other methods on the
CO3Dv2 dataset by a large margin, even for small number of

frames. As can be observed in Fig. 5 and in the supplemen-
tary video, DUSt3R handles opposite viewpoints (i.e. nearly
180◦ apart) seemingly without much troubles. In the end,
DUSt3R obtains relatively stable performance, regardless of
the number of input views. When comparing with PoseD-
iffusion [61] on RealEstate10K, we report performances
with and without training on the same dataset. Note that
DUSt3R’s training data include a small subset of CO3Dv2
(we used 50 sequences for each category, i.e. less than 7%
of the full training set) but no data from RealEstate10K
whatsoever.

An example of reconstruction on RealEstate10K is shown
in Fig. 7. Our network outputs a consistent pointcloud de-
spite wide baseline viewpoint changes between the first and
last pairs of frames.

Methods N Frames
Co3Dv2 [35] RealEstate10K [82]

RRA@15 RTA@15 mAA(30) mAA(30)
COLMAP+SPSG 3 ∼22 ∼14 ∼15 ∼23
PixSfM 3 ∼18 ∼8 ∼10 ∼17
Relpose 3 ∼56 - - -
PoseDiffusion 3 ∼75 ∼75 ∼61 - (∼77)
DUSt3R 512 3 95.3 88.3 77.5 69.5
COLMAP+SPSG 5 ∼21 ∼17 ∼17 ∼34
PixSfM 5 ∼21 ∼16 ∼15 ∼30
Relpose 5 ∼56 - - -
PoseDiffusion 5 ∼77 ∼76 ∼63 - (∼78)
DUSt3R 512 5 95.5 86.7 76.5 67.4
COLMAP+SPSG 10 31.6 27.3 25.3 45.2
PixSfM 10 33.7 32.9 30.1 49.4
Relpose 10 57.1 - - -
PoseDiffusion 10 80.5 79.8 66.5 48.0 (∼80)
DUSt3R 512 10 96.2 86.8 76.7 67.7

Table 1. Comparison with the state of the art for multi-view pose
regression on the CO3Dv2 [35] and RealEstate10K [82] with 3,
5 and 10 random frames. (Parentheses) indicates results obtained
after training on RealEstate10K. In contrast, we report results for
DUSt3R after global alignment without training on RealEstate10K.

D. Visual localization
In addition to the map-free benchmark in the main paper, we
provide here additional experiments for the task of visual
localization.
Datasets and metrics. We evaluate DUSt3R for the task of
absolute pose estimation on the 7Scenes [48] and Cambridge
Landmarks datasets [14]. 7Scenes contains 7 indoor scenes
with RGB-D images from videos and their 6-DOF camera
poses. Cambridge-Landmarks contains 6 outdoor scenes
with RGB images and their associated camera poses, which
are obtained via SfM. We report the median translation and
rotation errors in (cm/◦), respectively.
Protocol and results. To compute camera poses in world
coordinates, we use DUSt3R as a 2D-2D pixel matcher (see
Section 3.3 of the main paper) between a query and the
most relevant database images obtained using off-the-shelf



Methods
7Scenes (Indoor) [48] Cambridge (Outdoor) [14]

Chess Fire Heads Office Pumpkin Kitchen Stairs S. Facade O. Hospital K. College St.Mary’s G. Court
FM

AS [40] 4/1.96 3/1.53 2/1.45 9/3.61 8/3.10 7/3.37 3/2.22 4/0.21 20/0.36 13/0.22 8/0.25 24/0.13
HLoc [38] 2/0.79 2/0.87 2/0.92 3/0.91 5/1.12 4/1.25 6/1.62 4/0.2 15/0.3 12/0.20 7/0.21 11/0.16

E
2E

DSAC* [3] 2/1.10 2/1.24 1/1.82 3/1.15 4/1.34 4/1.68 3/1.16 5/0.3 15/0.3 15/0.3 13/0.4 49/0.3
HSCNet [16] 2/0.7 2/0.9 1/0.9 3/0.8 4/1.0 4/1.2 3/0.8 6/0.3 19/0.3 18/0.3 9/0.3 28/0.2
PixLoc [39] 2/0.80 2/0.73 1/0.82 3/0.82 4/1.21 3/1.20 5/1.30 5/0.23 16/0.32 14/0.24 10/0.34 30/0.14
SC-wLS [67] 3/0.76 5/1.09 3/1.92 6/0.86 8/1.27 9/1.43 12/2.80 11/0.7 42/1.7 14/0.6 39/1.3 164/0.9
NeuMaps [53] 2/0.81 3/1.11 2/1.17 3/0.98 4/1.11 4/1.33 4/1.12 6/0.25 19/0.36 14/0.19 17/0.53 6/ 0.10
DUSt3R 224-NoCroCo 5/1.76 6/2.02 3/1.75 5/1.54 9/2.35 6/1.82 34/7.81 24/1.33 79/1.17 69/1.15 46/1.51 143/1.32
DUSt3R 224 3/0.96 3/1.02 1/1.00 4/1.04 5/1.26 4/1.36 21/4.08 9/0.38 26/0.46 20/0.32 11/0.38 36/0.24
DUSt3R 512 3/0.97 3/0.95 2/1.37 3/1.01 4/1.14 4/1.34 11/2.84 6/0.26 17/0.33 11/0.20 7/0.24 38/0.16

Table 2. Absolute camera pose on 7Scenes [48] and Cambridge-Landmarks [14] datasets. We report the median translation and rotation
errors (cm/◦) to feature matching (FM) based and end-to-end (E2E) learning-base methods. The best results at each category are in bold.

image retrieval AP-GeM [36]. In other words, we simply
use the raw pointmaps output from f(IQ, IB) without any
refinement, where IQ is the query image and IB is a database
image. We use the top 20 retrieved images for Cambridge-
Landmarks and top 1 for 7Scenes and leverage the known
query intrinsics.

We compare our results against the state of the art
in Tab. 2 for each scene of the two datasets. Our method ob-
tains comparable accuracy compared to existing approaches,
being feature-matching ones [38, 40] or end-to-end learning-
based methods [3, 16, 39, 53, 67], even managing to out-
perform strong baselines like HLoc [38] in some cases. We
believe this to be significant for two reasons. First, DUSt3R
was never trained for visual localisation in any way. Second,
neither query image nor database images were seen during
DUSt3R’s training.

Additional results. We include additional results of vi-
sual localization on the 7-scenes and Cambridge-Landmarks
datasets [14, 48]. Namely, we experiment with a scenario
where the focal parameter of the querying camera is un-
known. In this case, we feed the query image and a database
image into DUSt3R, and get an un-scaled 3D reconstruc-
tion. We then scale the resulting pointmap according to the
ground-truth pointmap of the database image, and extract the
pose as described in Sec. 3.3 of the main paper. Tab. 3 shows
that this method performs reasonably well on the 7-scenes
dataset, where the median translation error is on the order
of a few centimeters. On the Cambridge-Landmarks dataset,
however, we obtain considerably larger errors. After inspec-
tion, we find that the ground-truth database pointmaps are
sparse, which prevents any reliable scaling of our reconstruc-
tion. On the contrary, 7-scenes provides dense ground-truth
pointmaps. We conclude that further work is necessary for
”in-the-wild” visual-localization with unknown intrinsics.

E. Focal Length Estimation

To evaluate the accuracy of estimated intrinsics, we further
study the output pointmaps and report below (i) the average
absolute error of field-of-view estimates (in degrees, follow-
ing Sec. 3.3 “Recovering intrinsics.” of the main paper)
and (ii) the average 2D reprojection accuracy (in %) at a
threshold of 1% of the image diagonal in Tab. 4, both mea-
sured on raw pointmaps for 1000 randomly sampled (unseen)
test images from the Habitat [41], BlendedMVS [72] and
CO3D [35] datasets. Note that Habitat and BlendedMVS
are synthetically generated, thus the intrinsics are perfectly
known. For CO3D, we consider approximate focals esti-
mated via COLMAP [43]. Overall, DUSt3R excels at recov-
ering a 3D geometry that closely respects the pinhole camera
model and allows for reliable focal length estimation, even
in the monocular case.

F. Ablations

CroCo pretraining. We ablate the impact of the CroCo
pretraining and image resolution on DUSt3R’s performance.
We report results in tables 1,2,3 in the main paper and Tab. 2
of the supplementary for various tasks. Overall, the observed
consistent improvements suggest the crucial role of pretrain-
ing and high resolution in modern data-driven approaches,
as also noted by [29, 65].
Convergence time v.s. image numbers. We also conducted
ablation studies on the convergence time and performance,
as well as the impact of the number of images in Fig. 8
. As stated in the main paper, global alignment converges
well and fast, and reducing the number of iterations has little
impact, see Fig. 8 (left). A reasonable 3D reconstruction
with ≈ 2mm error overall can thus be reached within 30
seconds from scratch for a single DTU scene with 49 images
and 10-NN (490 pairs) using a single H100 GPU. We also
show the impact of reducing the number of graph edges (i.e.
image pairs), which is slightly detrimental (Fig. 8 right).



Methods
GT 7Scenes (Indoor) [48] Cambridge (Outdoor) [14]

Focals Chess Fire Heads Office Pumpkin Kitchen Stairs S. Facade O. Hospital K. College St.Mary’s G. Court

DUSt3R 512 from 2D-matching ✓ 3/0.97 3/0.95 2/1.37 3/1.01 4/1.14 4/1.34 11/2.84 6/0.26 17/0.33 11/0.20 7/0.24 38/0.16

DUSt3R 512 from scaled rel-pose × 5/1.08 5/1.18 4/1.33 6/1.05 7/1.25 6/1.37 26/3.56 64/0.97 151/0.88 102/0.88 79/1.46 245/1.08

Table 3. Absolute camera pose on 7Scenes [48] (top 1 image) and Cambridge-Landmarks [14] (top 20 images) datasets. We report the
median translation and rotation errors (cm/◦).

Method Habitat [41] BlendedMVS [72] CO3D [35]

Monocular 4.13◦ / 98.3% 3.40◦ / 99.4% 1.88◦ / 97.8%
Binocular 2.09◦ / 95.2% 2.61◦ / 98.4% 1.62◦ / 97.7%

Table 4. Focal length estimation: average absolute error of field-of-
view (◦) and average 2D reprojection accuracy (%) on Habitat [41],
BlendedMVS [72] and CO3D [35].

Figure 8. Overall mean error (in mm) on DTU when varying the
number of global alignment iterations and the number of input
image pairs.

G. Details on the optimization for Global Align-
ment

In Sec. 3.4 of the main paper, we describe a strategy to
globally align in the same coordinate frame all pairwise pre-
dictions Xn,e for v ∈ {n,m} with e = (n,m) ∈ E , where
G = (V, E) is the image co-visibility graph. The optimiza-
tion procedure is based on the minimization via gradient
descent of a confidence-weighted average of the 3D projec-
tion errors (Eq. (5) of the main paper). We implement the
minimization using the automatic differentiation pytorch
package [31]. We find that a learning rate starting in the
range [0.01, 0.05] and linearly decaying to zero for a few
hundreds iterations works well in practice.

To accelerate convergence, we initialize all parameters
(i.e. absolute camera poses {Pn}, camera intrinsics {Kn},
depthmaps {Dn} for n = 1 . . . N , but also pairwise poses
{Pe} and scaling factors {σe} for e ∈ E , see Sec. 3.4 of the
main paper) using a heuristic procedure. First, we estimate
all intrinsic parameters {Kn} according to the procedure de-
scribed in Sec. 3.3 of the main paper. Then, we extract a max-
imum spanning tree T ⊆ G by scoring each edge e = (n,m)

according to the average confidence predicted for this edge
(i.e. score(e) = mean(Cn,e) + mean(Cm,e)). The insight
in this case is to rely on the most confident edges, and to
propagate their pose step by step to all nodes. We therefore
estimate the scaled relative pose for all such edges e ∈ T
using Procrustes alignment [20] on the per-view pointmaps:
σe, Pe = Procrustes(Xn,e, Xm,e). By propagation along
the tree edges, we can recover a globally aligned point-
cloud {χn}n=1...N . We then recover all remaining pairwise
poses Pe for all e /∈ T using Procrustes alignment again
as σe, Pe = Procrustes(Xn,e, χn). Finally, we initialize all
image poses Pn using RANSAC-PnP given Kn and χn. The
depthmap Dn is finally set as Dn = [0, 0, 1, 0]Pnh(χ

n).

H. Training details
H.1. Training data

Ground-truth pointmaps. Ground-truth pointmaps X̄1,1

and X̄2,1 for images I1 and I2, respectively, from Eq. (2) in
the main paper are obtained from the ground-truth camera
intrinsics K1,K2 ∈ R3×3, camera poses P1, P2 ∈ R3×4

and depthmaps D1, D2 ∈ RW×H . Specifically, we simply
project both pointmaps in the reference frame of P1:

X̄1,1 = K−1
1 ([U ;V ;1] ·D1) (1)

X̄2,1 = P1P
−1
2 h

(
X̄2,2

)
= P1P

−1
2 h

(
K−1

2 ([U ;V ;1] ·D2)
)
, (2)

where X · Y denotes element-wise multiplication, U, V ∈
RW×H are the x, y pixel coordinate grids and h is the map-
ping to homogeneous coordinates, see Eq. (1) of the main
paper.
Relation between depthmaps and pointmaps. As a re-
sult, the depth value D1

i,j at pixel (i, j) in image I1 can be
recovered as

D1
i,j = X̄1,1

i,j,2. (3)

Therefore, all depthmaps displayed in the main paper and
this supplementary are straightforwardly extracted from
DUSt3R’s output as X1,1

:,:,2 and X2,2
:,:,2 for images I1 and I2,

respectively.
Dataset mixture. DUSt3R is trained with a mixture of eight
datasets: Habitat [41], ARKitScenes [8], MegaDepth [17],
Static Scenes 3D [24], Blended MVS [72], ScanNet++ [73],



CO3Dv2 [35] and Waymo [51]. These datasets feature di-
verse scene types: indoor, outdoor, synthetic, real-world,
object-centric, etc. Table 6 shows the number of extracted
pairs in each datasets, which amounts to 8.5M in total.
Data augmentation. We use standard data augmentation
techniques, namely random color jittering and random center
crops, the latter being a form of focal augmentation. Indeed,
some datasets are captured using a single or a small number
of camera devices, hence many images have practically the
same intrinsic parameters. Centered random cropping thus
helps in generating more focals. Crops are centered so that
the principal point is always centered in the training pairs.
At test time, we observe little impact on the results when the
principal point is not exactly centered. During training, we
also systematically feed each training pair (I1, I2) as well
as its inversion (I2, I1) to help generalization. Naturally,
tokens from these two pairs do not interact.

H.2. Training hyperparameters

We report the detailed hyperparameter settings we use for
training DUSt3R in Table 5. We set the confidence hyperpa-
rameter in the confidence-weighted regression loss (from Eq.
(4) in the main paper) to α = 0.2.
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Hyperparameters low-resolution training high-resolution training DPT training
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Image Augmentations Random centered crop, color jitter Random centered crop, color jitter Random centered crop, color jitter

Initialization CroCo v2[65] low-resolution training high-resolution training

Table 5. Detailed hyper-parameters for the training, with first a low-resolution training with a linear head followed by a higher-resolution
training still with a linear head and a final step of higher-resolution training with a DPT head, in order to save training time

Datasets Type N Pairs
Habitat [41] Indoor / Synthetic 1000k
CO3Dv2 [35] Object-centric 941k
ScanNet++ [73] Indoor / Real 224k
ArkitScenes [8] Indoor / Real 2040k
Static Thing 3D [24] Object / Synthetic 337k
MegaDepth [17] Outdoor / Real 1761k
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Table 6. Dataset mixture and sample sizes for DUSt3R training.
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Methods
GT GT GT Align KITTI ScanNet ETH3D DTU T&T Average

Pose Range Intrinsics rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel↓ τ ↑ rel↓ τ ↑ time (s)↓

(a)
COLMAP [43, 44] ✓ × ✓ × 12.0 58.2 14.6 34.2 16.4 55.1 0.7 96.5 2.7 95.0 9.3 67.8 ≈ 3 min
COLMAP Dense [43, 44] ✓ × ✓ × 26.9 52.7 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4 40.2 48.8 ≈ 3 min

(b)

MVSNet [71] ✓ ✓ ✓ × 22.7 36.1 24.6 20.4 35.4 31.4 (1.8) (86.0) 8.3 73.0 18.6 49.4 0.07
MVSNet Inv. Depth [71] ✓ ✓ ✓ × 18.6 30.7 22.7 20.9 21.6 35.6 (1.8) (86.7) 6.5 74.6 14.2 49.7 0.32
Vis-MVSSNet [76] ✓ ✓ ✓ × 9.5 55.4 8.9 33.5 10.8 43.3 (1.8) (87.4) 4.1 87.2 7.0 61.4 0.70
MVS2D ScanNet [70] ✓ ✓ ✓ × 21.2 8.7 (27.2) (5.3) 27.4 4.8 17.2 9.8 29.2 4.4 24.4 6.6 0.04
MVS2D DTU [70] ✓ ✓ ✓ × 226.6 0.7 32.3 11.1 99.0 11.6 (3.6) (64.2) 25.8 28.0 77.5 23.1 0.05

(c)

DeMon [59] ✓ × ✓ × 16.7 13.4 75.0 0.0 19.0 16.2 23.7 11.5 17.6 18.3 30.4 11.9 0.08
DeepV2D KITTI [57] ✓ × ✓ × (20.4) (16.3) 25.8 8.1 30.1 9.4 24.6 8.2 38.5 9.6 27.9 10.3 1.43
DeepV2D ScanNet [57] ✓ × ✓ × 61.9 5.2 (3.8) (60.2) 18.7 28.7 9.2 27.4 33.5 38.0 25.4 31.9 2.15
MVSNet [71] ✓ × ✓ × 14.0 35.8 1568.0 5.7 507.7 8.3 (4429.1) (0.1) 118.2 50.7 1327.4 20.1 0.15
MVSNet Inv. Depth [71] ✓ × ✓ × 29.6 8.1 65.2 28.5 60.3 5.8 (28.7) (48.9) 51.4 14.6 47.0 21.2 0.28
Vis-MVSNet [76] ✓ × ✓ × 10.3 54.4 84.9 15.6 51.5 17.4 (374.2) (1.7) 21.1 65.6 108.4 31.0 0.82
MVS2D ScanNet [70] ✓ × ✓ × 73.4 0.0 (4.5) (54.1) 30.7 14.4 5.0 57.9 56.4 11.1 34.0 27.5 0.05
MVS2D DTU [70] ✓ × ✓ × 93.3 0.0 51.5 1.6 78.0 0.0 (1.6) (92.3) 87.5 0.0 62.4 18.8 0.06
Robust MVD Baseline [46] ✓ × ✓ × 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1 6.3 56.0 0.06

(d)

DeMoN [59] × × ✓ ∥t∥ 15.5 15.2 12.0 21.0 17.4 15.4 21.8 16.6 13.0 23.2 16.0 18.3 0.08
DeepV2D KITTI [57] × × ✓ med (3.1) (74.9) 23.7 11.1 27.1 10.1 24.8 8.1 34.1 9.1 22.6 22.7 2.07
DeepV2D ScanNet [57] × × ✓ med 10.0 36.2 (4.4) (54.8) 11.8 29.3 7.7 33.0 8.9 46.4 8.6 39.9 3.57
DUSt3R 224-NoCroCo × × × med 15.14 21.16 7.54 40.00 9.51 40.07 3.56 62.83 11.12 37.90 9.37 40.39 0.05
DUSt3R 224 × × × med 15.39 26.69 (5.86) (50.84) 4.71 61.74 2.76 77.32 5.54 56.38 6.85 54.59 0.05
DUSt3R 512 × × × med 9.11 39.49 (4.93) (60.20) 2.91 76.91 3.52 69.33 3.17 76.68 4.73 64.52 0.13

Table 7. Multi-view depth evaluation with different settings: a) Classical approaches; b) with poses and depth range, without alignment; c)
absolute scale evaluation with poses, without depth range and alignment; d) without poses and depth range, but with alignment. (Parentheses)
denote training on data from the same domain. The best results for each setting are in bold.
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