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De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts

Supplementary Material

In this supplementary material, we provide more details001
of our method, organized as follows:002

• In Section 1, we provide the detailed training settings and003
illustrate how KDCI combines with existing DFKD meth-004
ods, and show the algorithm process, corresponding to005
Section 4.3 of the main body.006

• In Section 2, we qualitatively assess students’ learning007
progress about vanilla DFKD methods and their KDCI-008
based version to verify the positive effect of KDCI on the009
existing DFKD method.010

• In Section 3, we analyze the possible reasons for the dif-011
ference in performance improvement, corresponding to012
Section 4 of the main body.013

• In Section 4, we provide more observable visualization014
results as more sufficient evidence, corresponding to Sec-015
tion 4.7 of the main body.016

• In Section 5, we discuss the significant differences be-017
tween our KDCI and other methods focusing on data dis-018
tribution.019

• In Section 6, we discuss the broader impact and potential020
limitations.021

• In Section 7, we provide the detailed experimental set-022
tings for the used baseline methods, corresponding to023
Section 4.2 of the main body.024

1. Additional Training Details & Algorithm025

Process of Combining KDCI with Existing026

DFKD Methods027

1.1. Training Details028

We provide the detailed experimental settings for our KDCI029
framework. Our KDCI and reproducible methods are im-030
plemented through PyTorch [11]. All models are trained031
on RTX 3090 GPUs. For CIFAR-10 and CIFAR-100, all032
training settings (e.g., loss function, optimizer, batch size,033
learning rate, etc) of the reported methods are consistent034
with the released codebase. The results are shown in Ta-035
ble 1 of the main body. For Tiny-ImageNet, initially, we036
try to find a unified teacher model for the Tiny-ImageNet037
dataset in open-sourced projects. However, one problem is038
that the teacher model pre-trained on Tiny-ImageNet seems039
confidential, so finding an open-source unified model is dif-040
ficult. In this case, we train the unified renset-34 teacher041
model for 200 epochs on the original training data. Dur-042
ing the teacher’s training, we use the SGD optimizer with043
the momentum as 0.9, weight decay as 5e−4, the batch size044

Algorithm 1 Training process of generation-based methods
combined with our KDCI
Input: A pre-trained teacher model T , a generator g, a student

model S, distillation epochs T , batch size Nm, the iterations
of generator g in each epoch Tg, the iterations of student fs
in each epoch Ts, the confounder size N .

1: for epoch = [1, . . . , T ] do
2: // Generation stage
3: for generator iterations = [1, . . . , Tg] do
4: Randomly sample noises and labels (z, y)
5: Synthesize a mini-batch training data X = g(z, y)
6: Update generator g with the generator loss
7: end for
8: Synthesize training data X = g(z, y). Obtain the predic-

tion feature M =
{
mj ∈ Rd

}Nm

j=1
9: Prototype clustering for M . Calculate the number of the

prediction features in i-th cluster
Ni, the feature cluster

∑Ni
k=1m

i
k and the subcenter

zi =
1
Ni

∑Ni
k=1m

i
k.

10: Construct a confounder dictionary Z = [z1,z2, . . . ,zN ]
and calculate the prototype proportion Ps(zi) = Ni/Nm

11: // Distillation stage
12: for student iterations = [1, . . . , Ts] do
13: Synthesize training data X = g(z, y). Get models’s

predictions T (X) and S(X)
14: Calculate the prior information:

F (z) =
∑N

i=1 λiziPs(zi)
15: Compensate the student’s predictions:

S′(X) = ϕ(S(X), F (z))
16: Update the student S with KD⟨T (X),S′(X)⟩
17: end for
18: end for
Output: The student model S.

as 128, and cosine annealing learning rate with an initial 045
value of 0.1. The teacher model can converge without addi- 046
tional tuning. Based on this pre-trained teacher, we train all 047
students for 200 epochs. For the student, we use the SGD 048
optimizer with the momentum as 0.9, the weight decay as 049
1e−4, the batch size as 256, the cosine annealing learning 050
rate with an initial value of 0.2 for Fast [10], and 0.1 for 051
DeepInv [1] & DFND [5]. The results are shown in Ta- 052
ble 2 of the main body. For ImageNet, We choose the same 053
pre-trained resnet-50 model with [14] and unify the teacher 054
model of different baseline methods. For Fast, we test di- 055
rectly on the open-source project. For DeepInv, we repro- 056
duce the corresponding results with the specified backbone 057
pair. For DFND, we select 600k samples from the unlabeled 058
FlickerlM dataset. The teacher’s backbone is different from 059
the original paper. The different backbones may cause the 060
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Figure 1. The test accuracy on Tiny-ImageNet dataset across different local training epochs E = {10, 20, . . . , 200}. Our KDCI framework
improves the performance of baselines consistently.

results we reproduce to differ from the original paper. The061
results are shown in Table 1 of the supplementary material.062
For the implementation of our KDCI, the hidden dimension063
dn is set to 256. And dh equals the hidden dimension d and064
the number of classes. By default, ϕ(·) uses feature addi-065
tion. For various baseline methods, the settings are shown066
in Section 7 of the supplementary material.067

1.2. Algorithm Process068

In the existing DFKD task, the generation-based and069
sampling-based method processes are different. There-070
fore, the way KDCI combines these methods and the hy-071
perparameter settings are also slightly different. For the072
generation-based process, the generator and student mod-073
els are updated alternately, which means the student’s train-074
ing data is updated in each epoch. We use a mini-batch of075
synthetic training data to construct the confounder dictio-076
nary, and the dictionary will be updated as the generator is077
updated. For the sampling-based process, existing meth-078
ods select unlabeled data according to the preferences of079
the teacher model. Then, the student relies on these un-080
labeled data for data-based knowledge distillation training.081
We use all sampled data to construct the confounder dictio-082
nary. During subsequent student training, the dictionary is083
fixed. For a clearer understanding, we describe the above084
process as Algorithm 1 and 2, respectively.085

2. Vanilla DFKD Methods vs. Their KDCI-086

based Versions087

In the main body, we have compared the quantitative re-088
sults of vanilla DFKD methods and their KDCI-based ver-089
sions. To observe the positive effect of KDCI on the exist-090
ing DFKD methods more clearly, we visualize the student’s091
test accuracy on the Tiny-ImageNet dataset. The results are092
shown in Figure 1. KDCI can consistently help students093
from the beginning of training to the end, which verifies its094
effectiveness.095

Algorithm 2 Training process of sampling-based methods
combined with our KDCI
Input: A pre-trained teacher model T , a student model S, unla-

beled training dataset D = {xj}nj=1, distillation epochs T ,
batch size m, number of batches M , the number of sampled
data Nm, the confounder size N .

1: // Sampling stage
2: Sample the training data {xj}Nm

j=1 from D. Obtain the predic-

tion feature set M =
{
mj ∈ Rd

}Nm

j=1
3: Prototype clustering for M . Calculate the number of the

prediction features in i-th cluster Ni, the feature cluster∑Ni
k=1m

i
k and the subcenter zi =

1
Ni

∑Ni
k=1m

i
k.

4: Construct a confounder dictionary Z = [z1,z2, . . . , zN ] and
calculate the prototype proportion Ps(zi) = Ni/Nm

5: // Distillation stage
6: for epoch = [1, . . . , T ] do
7: for mini-batch = [1, . . . ,M ] do
8: Sample a mini-batch training data:

X = {xi}mi=1 from {xj}Nm
j=1

9: Get teacher and student predictions T (X) and S(X)
10: Calculate the prior information:

F (z) =
∑N

i=1 λiziPs(zi)
11: Compensate the student’s predictions:

S′(X) = ϕ(S(X), F (z))
12: Update the student S with KD⟨T (X),S′(X)⟩
13: end for
14: end for
Output: The student model S.

3. Analyses of Difference in Performance Im- 096

provements 097

Judging from the experimental results, KDCI has different 098
gains for different DFKD methods on different datasets. We 099
think such observations arise from various factors. 100

• By default, we choose the teacher model itself to extract 101
the confounding dictionary. The prediction feature set 102
provided by teachers of different backbones has different 103
expressiveness, which affects the compensation degree of 104
backdoor adjustment for bias during the causal interven- 105
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tion. The tests in Lines 513-531 and Table. 5 of the main106
body also verify this conclusion.107

• The degree of distribution shift of synthetic data on108
distinct datasets is different. More complex datasets109
may degrade the generation quality for generation-based110
methods, resulting in more significant distribution shifts.111
KDCI tends to be more effective for more sophisticated112
datasets.113

• Different baseline methods with different training losses114
are influential. Observations such as Section 4.4 of the115
main body suggest that methods that already incorporate116
prior likelihood knowledge of the data may weaken the117
KDCI gain.118

• In addition, there may be many underlying factors. Nev-119
ertheless, KDCI, as a model-agnostic general framework,120
has promising and competitive improvements and gains121
for various models as a whole. We believe that a deeper122
exploration of the relevant mechanisms is a promising123
perspective. For this topic, we leave it to future work.124

C
IF
A
R
-1
0

C
IF
A
R
-1
00

Ground Truth Vanilla Fast w/ KDCI

frogfrog deer

shipship truck

sunflowers lion sunflowers

computer 
keyboard bridge computer 

keyboard

Im
ag
eN

et

face_powder lion face_powder

soup_bowl dough soup_bowl

Ti
ny
-Im

ag
eN

et chest binder chest

spiny_lobster bath_towel spiny_lobster

Figure 2. Qualitative results of the vanilla and KDCI-based ver-
sion on CIFAR-10, CIFAR-100, ImageNet, and Tiny-ImageNet.

4. More Visual Evidence 125

To further verify the effectiveness, we provide more case 126
studies of causal intervention. As shown in Figure 2, 127
we visualize some test instances corrected by our KDCI 128
compared to the vanilla version (Fast) on four kinds of 129
datasets (i.e., CIFAR-10, CIFAR-100, ImageNet, and Tiny- 130
ImageNet). The vanilla version sometimes confuses some 131
test instances due to shape or color. Our KDCI can repair 132
these prediction shifts to enhance student performance. 133

5. Discussion with Other Works that Address 134

Distribution Shifts 135

Several DFKD works already address distribution shifts in 136
adversarial contexts [2, 3, 7, 12]. The works reveal distri- 137
bution shift issues in the DFKD task from different aspects, 138
but our method is significantly different from these works. 139
Specifically, the differences between our KDCI and others 140
are as follows: 141

• Applicability. These existing works tacitly use the same 142
motivation, i.e., as the generator gets updated, the dis- 143
tribution of synthetic data will change, causing the stu- 144
dent to forget the knowledge it acquired at previous steps. 145
However, such motivation does not apply to sampling- 146
based methods. After selecting the training samples, they 147
will not change during the entire student training pro- 148
cess. Our motivation comes from the observed distribu- 149
tion shifts between the substitution data and can cover the 150
two methods mentioned. 151

• Economy. Existing methods often rely on substantial ad- 152
ditional computational and storage costs, e.g., the need 153
to store and maintain an additional dynamic collection of 154
generated samples [3], the need for additional generator 155
architectures to memorize knowledge of past generated 156
data (an additional Variational Autoencoder (VAE) [2] 157
or Exponential Moving Average generator [7]), and ad- 158
ditional memory bank or additional loss calculation and 159
gradient update [12]. In contrast, our method only needs 160
to compute and store a small number of matrix computa- 161
tion results. Compared with the update of the models, the 162
computational cost of the clustering process is basically 163
negligible. 164

• Plug-and-play. Existing works are to propose new meth- 165
ods. Undoubtedly, these methods can provide a potential 166
reference for other DFKD methods, but whether they can 167
be easily combined with existing DFKD methods and im- 168
prove overall performance is still unknown. Our proposed 169
technique is model-agnostic, as a plug-and-play paradigm 170
that integrates well with existing works. A large number 171
of experiments have proved this conclusion. 172
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6. Further Discussion173

6.1. Broader Impact174

The positive impact of this work: the proposed KDCI mod-175
ule can suppress the distribution shifts between the substi-176
tution and original data in the DFKD task, preventing the177
potential discrimination of the student’s learning. While178
the pre-trained model for extracting prior knowledge uses179
the teacher itself, our method does not require additional180
dependencies and auxiliary information. The negative im-181
pacts of this work: students may be forced to identify mi-182
nority groups for malicious purposes with customized bi-183
ased teacher models. Therefore, we have to make sure that184
the DFKD technique is used for the right purpose.185

6.2. Limitations186

Since there are countless methods with insights for the187
DFKD task, other ways of classifying forms may also be188
reasonable. In this paper, we simply divide the source of the189
substitution data into generation-based and sampling-based190
methods. Similarly, it is impossible to cover all DFKD191
methods, so only open-source and representative methods192
are selected as the baseline. Nevertheless, the existing per-193
formance improvement is enough to prove the positive im-194
pact of KDCI on students.195

In addition, since what we propose is a framework rather196
than a specific method, the test on the effectiveness of KDCI197
relies on the experimental setting of the existing DFKD198
methods. Currently, the mainstream open-source DFKD199
methods rarely use real-life medical or facial datasets for200
testing, so we only follow the mainstream experimental201
settings. Following the consensus of peers is necessary202
to increase the impact of our work. In this work, we203
select datasets that are widely used and accepted by the204
vast majority of DFKD methods. Following previous data205
paradigms is beneficial for acceptance by the relevant re-206
search community and enhances the persuasiveness of our207
method.208

7. Experimental Setup of the Baseline DFKD209

Methods210

DAFL. DAFL [4] is a data-free generation method. We211
keep the generator loss from the original as: LGEN =212
Loh + αLa + βLie. The knowledge distillation loss is:213
LKD = DKL(NS(x),NT (x)). Following the original set-214
tings, we set α = 1e − 3, β = 20. We use SGD with the215
weight decay of 5e−4, the momentum of 0.9, and the initial216
learning rate set as 0.1.217
Fast. Fast [10] is a fast data-free generation method via fea-218
ture sharing. We keep the generator loss from the original219
as: LGEN = αLcls + βLadv + γLfeat. The knowledge220
distillation loss is: LKD = DKL(NS(x),NT (x)). We set221
α = 0.4, β = 1.1, and γ = 10, which are the same as222

the original settings. We use the Adam Optimizer with a 223
learning rate of 1e− 3 to update the generator and the SGD 224
optimizer with a momentum of 0.9 and a learning rate of 225
0.1 for student training. 226
CMI. CMI [9] is a model inversion method with contrastive 227
learning. We keep the generator loss from the original as: 228
LGEN = αLbn + βLcls + γLadv + δLcr. The knowledge 229
distillation loss is: LKD = DKL(NS(x),NT (x)). We set 230
α = 1, β = 0.5, γ = 0.5, and δ = 0.8. We use the 231
Adam Optimizer with a learning rate of 1e−3 to update the 232
generator and the SGD optimizer with a momentum of 0.9 233
and a learning rate of 0.1 for student training. 234
DeepInv. DeepInv [13] is a model inversion method that 235
combines prior knowledge and adversarial training. We 236
keep the inversion loss from the original as: LGEN = 237
αtvRtv+αl2Rl2+αfRfeature+αcRcompete. The knowl- 238
edge distillation loss is: LKD = DKL(NS(x),NT (x)). 239
We set αtv = 2.5e − 5 , αl2 = 3e − 8, αf = 0.1 and 240
αc = 10, which are the same as the original setting. Be- 241
sides, we set the number of iterations as 1000 and use Adam 242
for optimization with a learning rate of 0.05. 243
DFND. DFND [5] is a sampling-based method using open- 244
world unlabeled data as the substitution data. Following 245
the original, we select 600k data with the highest teacher 246
confidence from the ImageNet dataset [6] as the sampled 247
data and resize them to the resolution of the corresponding 248
dataset. We use the same noisy distillation loss LKD = 249
HCE(Q(NS(x)), ŷ)+λDKL(NS(x),NT (x)), and λ is set 250
as 4. The student network is optimized using SGD and the 251
initial learning rate is set as 0.1 Weight decay and momen- 252
tum are set as 5e− 4 and 0.9, respectively. 253
Mosaick. Mosaick [8] is a sampling-based method us- 254
ing out-of-domain (OOD) unlabeled data as the substitu- 255
tion data. We select 600k data with the lowest teacher con- 256
fidence from the ImageNet dataset [6] as the OOD data. 257
Following the original settings, we use Adam for optimiza- 258
tion, with hyper-parameters lr = 1e − 3, β1 = 0.5, and 259
β2 = 0.999 for the generator and discriminator. The distil- 260
lation loss is LKD = λDKL − λR(G,D, T ) The student 261
network is optimized using SGD, and the initial learning 262
rate is set as 0.1. Weight decay and momentum are set as 263
1e− 4 and 0.9, respectively. 264
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