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1. More Details of CCD
The motivation of CCD lies in the challenges posed by

dense plantings in agricultural scenes. Close plant growth
makes it difficult to distinguish individual crops or de-
tect concealed objects, leading to inaccurate crop counting,
yield estimation, and so on. This can significantly impact
agricultural management and decision-making. Thus, we
aim to address these challenges by leveraging depth cues to
enhance the detection of concealed objects and individual
crops. By incorporating depth awareness into the detection
process, the method can better handle occlusions and dense
plantings, allowing for more accurate and robust crop de-
tection even in challenging scenarios. The proposed CCD
is definitely useful and has potential in broad agriculture-
related applications, e.g., fine weeding and pruning, yield
estimation, and automatic agricultural robot systems.

2. More Dataset Statistics
In this section, we report the ratio of objects with dif-

ferent sizes, shown in Tab. 1. Small object (SO) typically
refers to those that occupy a relatively small area (≤ 1%)
within an image, often leading to challenges in detection
due to their limited visual information. Dense object (DO)
refers to those closely packed together, making it difficult
to separate and identify individual instances.

3. More Ablation Study
In this section, we perform comprehensive ablation ex-

periments on various modules to extensively validate the ef-
fectiveness of the three main modules in RISNet, i.e., CFE,
DFD, and IFR, as well as the rationality behind the design
of each module.
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Target Size R≤ 0.2% 0.2% <R≤ 1% 1% <R

Ratio 75.5% 21% 3.5%

Table 1. Statistics on the ratio of objects with different sizes.

Method Sα ↑ Fω
β ↑ Eθ ↑

(a) ResNet-50+Conv 0.842 0.762 0.961
(b) ResNet-50+ASPP 0.843 0.763 0.950
(c) Res2Net-50+Conv 0.855 0.785 0.964
(d) Res2Net-50+ASPP 0.852 0.781 0.957
(e) PVT+Conv 0.863 0.793 0.967
(f) RISNet 0.866 0.803 0.967

Table 2. Ablation study of CFE Module.

Method Sα ↑ Fω
β ↑ Eθ ↑

(a) MFF→Concat+w/o RFD 0.861 0.790 0.965
(b) w/o MFF 0.864 0.795 0.967
(c) w/o RFD 0.863 0.799 0.966
(d) MFF→Concat 0.863 0.795 0.966
(e) RISNet 0.866 0.803 0.967

Table 3. Ablation study of DFD Module.

3.1. Effect of CFE Module

We provide detailed information on the ablation exper-
iments of the CFE module in Tab. 2. Our CFE module is
mainly composed of two parts, i.e., the PVT-based encoder
and the ASPP module. These modules are designed to cap-
ture the feature information of densely packed objects in
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Figure 1. Visual comparison of our RISNet with/without depth.
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Figure 2. Visual comparison of different iterations in our IFR module.

Method Sα ↑ Fω
β ↑ Eθ ↑

(a) itration 1+w/o FAF 0.850 0.785 0.949
(b) itration 1 0.858 0.792 0.961
(c) w/o GGA 0.866 0.795 0.967
(d) RISNet 0.866 0.803 0.967

Table 4. Ablation study of IFR Module.

CCD. To verify the effectiveness of each module, we per-
form ablation experiments on them separately. In (b) and
(d), we replace the encoder backbone from PVT to ResNet-
50 [8] and Res2Net-50 [7], respectively. Building upon this,
(a) and (c) further substitute the ASPP module with a simple
convolution operation. In (e), we replace the ASPP module
with a convolution while keeping the backbone unchanged.
The comparison between (f) and (a), (b), (c), (d) indicates
that replacing the backbone leads to varying degrees of per-
formance decline, demonstrating that PVT, as the backbone,
is more suitable for our task. The comparison between (e)
and (f) reveals a decrease in Fω

β after replacing the ASPP
module, indicating a reduction in the model’s prediction ac-
curacy. This is because, in contrast to convolution, ASPP
can capture object information through features with dif-

ferent scales, thereby aiding the model in achieving more
accurate detection results.

3.2. Effect of DFD Module

Tab. 3 presents detailed information on the ablation ex-
periments of the DFD module. Our DFD module consists
of the MFF module and the RFD module, and we sequen-
tially conduct ablation experiments to validate the effective-
ness of each module. In (b) and (c), we remove the MFF
module and the RFD module, respectively. In (d), a sim-
ple concatenation is used to fuse information from the two
modalities. (a) is obtained by removing the RFD module
from (d). (b) essentially uses only single-modal informa-
tion. Comparing (e) with (b), the introduction of depth in-
formation significantly improves Fω

β , indicating that depth
information contributes to better object localization in com-
plex environments. It is worth noting that comparing (e)
with (d) and (a) with (c), we find that our MFF module can
better integrate information from the two modalities than
concatenation. Even comparing (b) with (d), when concate-
nating multi-modal information, the metrics relative to us-
ing only single-modal information slightly decrease. This
is because, in the case of concatenation, the model tends to
rely more on RGB modality information. The decrease in
metrics for (c) compared to (e) also indicates the effective-
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Figure 3. PR and Fβ curves of the proposed RISNet and recent SOTA algorithms on CCD.

Model Publications NLPR NJU2K STERE SIP
M ↓ Fβ ↑ Sα ↑ Em ↑ M ↓ Fβ ↑ Sα ↑ Em ↑ M ↓ Fβ ↑ Sα ↑ Em ↑ M ↓ Fβ ↑ Sα ↑ Em ↑

CoNet[9] ECCV20 0.027 0.903 0.911 0.943 0.046 0.902 0.896 0.926 0.037 0.909 0.905 0.941 0.058 0.887 0.860 0.911
DASNet[23] MM20 0.021 0.929 0.929 0.960 0.042 0.911 0.902 0.935 0.037 0.915 0.910 0.939 0.051 0.900 0.877 0.918
RD3D[1] AAAI21 0.022 0.927 0.930 0.959 0.036 0.923 0.916 0.941 0.037 0.917 0.911 0.939 0.048 0.906 0.885 0.918
JLDCF[6] TPAMI21 0.022 0.925 0.925 0.955 0.041 0.912 0.902 0.936 0.040 0.913 0.903 0.934 0.049 0.903 0.880 0.918
BIANet[22] TIP21 0.023 0.924 0.926 0.956 0.036 0.929 0.917 0.942 0.039 0.912 0.905 0.935 0.047 0.904 0.887 0.920
BBSNet[20] TIP21 0.023 0.927 0.930 0.953 0.035 0.931 0.920 0.941 0.041 0.919 0.908 0.931 0.055 0.902 0.879 0.910
DSNet[18] TIP21 0.024 0.925 0.926 0.951 0.034 0.929 0.921 0.946 0.036 0.922 0.914 0.941 0.052 0.899 0.876 0.910
UTANet[24] TIP21 0.020 0.928 0.932 0.964 0.037 0.915 0.902 0.945 0.033 0.921 0.910 0.948 0.048 0.897 0.873 0.925
DCF[10] CVPR21 0.022 0.918 0.924 0.958 0.036 0.922 0.912 0.946 0.039 0.911 0.902 0.940 0.052 0.899 0.876 0.916
DSA2F[17] CVPR21 0.024 0.897 0.918 0.950 0.039 0.901 0.903 0.923 0.036 0.898 0.904 0.933 - - - -
SPNet[26] ICCV21 0.021 0.925 0.927 0.959 0.028 0.935 0.925 0.954 0.037 0.915 0.907 0.944 0.043 0.916 0.894 0.930
TriTrans[13] MM21 0.020 0.923 0.928 0.960 0.030 0.926 0.920 0.925 0.033 0.911 0.908 0.927 0.043 0.898 0.886 0.924
C2DFNet[21] TMM22 0.021 0.926 0.928 0.956 - - - - 0.038 0.911 0.902 0.938 0.053 0.894 0.782 0.911
MVSalNet[25] ECCV22 0.022 0.931 0.930 0.960 0.036 0.923 0.912 0.944 0.036 0.921 0.913 0.944 - - - -
SPSN[12] ECCV22 0.023 0.917 0.923 0.956 0.032 0.927 0.918 0.949 0.035 0.909 0.906 0.941 0.043 0.910 0.891 0.932
HiDAnet[19] TIP23 0.021 0.929 0.930 0.961 0.029 0.939 0.926 0.954 0.035 0.921 0.911 0.946 0.043 0.919 0.892 0.927

Ours 0.016 0.939 0.937 0.971 0.027 0.941 0.928 0.955 0.031 0.924 0.917 0.949 0.038 0.924 0.900 0.936

Table 5. Detailed comparison results of different methods on RGB-D SOD task. The best three results are highlighted in red, blue and
green.

ness of the RFD module.

3.3. Effect of IFR Module

The details of the ablation experiments for the IFR mod-
ule are shown in Tab. 4. Unlike the previous two modules,
the IFR module is composed of iterative optimization and
final low-level feature fusion optimization. In (b), we elim-
inate iterative optimization. In (c), based on (b), we remove
the fusion of low-level features and directly output the pre-

diction result. In (d), we remove the GGA module during
the iterative optimization process, meaning that the coarse
prediction map from the previous stage is no longer used
to assist in locating objects in the next stage. Comparing
(d) with (a), (b), and (c), the significant decrease in met-
rics indicates that our iterative optimization strategy is very
beneficial for the model. The comparison between (a) and
(b) demonstrates the effectiveness of our FAF module, low-
level features contain more geometric information, and fus-



ing this information helps optimize our prediction results.
The comparison between (d) and (c) highlights the impor-
tance of GGA. With the assistance of GGA, our model
can better locate the position of small objects, allowing the
model to focus on the region of interest and aiding in the
detection of challenging objects.

4. More Comparisons
4.1. Effectiveness of Depth

In Fig. 1, we illustrate the utility of depth information in
aiding RISNet in object detection.

4.2. Visual comparison of each iteration

We show the output of each iteration in Fig. 2.

4.3. PR & Fβ curves on CCD

In Fig. 3, we show the PR & Fβ curves of different meth-
ods on CCD. The red curve represents our method.

5. Experiments on SOD
5.1. Datasets

For the RGB-D SOD task, we follow established prac-
tices by [10, 20, 26], selecting 1485 samples from NJU2K
[11] and 700 samples from NLPR [16], totaling 2185 sam-
ples for training. Subsequently, we assess the performance
of our model on widely used datasets, including NLPR [16],
NJU2K [11], STERE [15], and SIP [4].

5.2. Evaluation Metrics

Following [26], we use the widely adopted metrics mean
absolute error M , max F-measure Fβ [14], max E-measure
Em [3] [5], and structure measure Sα [2] as our evaluation
criteria.

5.3. Comparisons with State-of-the-arts

We compare our proposed RISNet with several existing
RGB-D SOD methods. As depicted in Tab. 5, our model
still achieves superior results. This further demonstrates the
generalization capability of our model and underscores the
superiority of our framework.
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