
DiffPerformer: Iterative Learning of Consistent Latent Guidance for
Diffusion-based Human Video Generation

Supplementary Material

In this supplementary material, we present extra experi-
ment details (Sec. A), user study (Sec. B), algorithm details
(Sec. C), more comparison results (Sec. D), and more anal-
ysis on core components (Sec. E).

A. Experiment Details
A.1. Training Settings
We adopt AdamW as the optimizer to finetune the pose-
guided diffusion model with batch size of 1. We use the
center crop and randomly sample frames to construct the
input for each iteration and the frame number in each itera-
tion is 8. To preserve generation priors from the pretrained
model while embedding the specific appearance in the tem-
poral domain, we update the parameters of the temporal-
related layers and freeze other layers when finetuning the
pose-guided diffusion model. Besides, we adopt slide win-
dow to generate long videos. The window side is set to 16
and the stride is 8. For each video, we select 80% frames
for training and 20% frames for testing.

A.2. Datasets
We conduct experiments on two datasets: (1) the Daily Cap-
tured Videos dataset and (2) the TikTok dataset [17].
Daily Captured Videos. To cover comprehensive mo-
tion in daily action, we propose the Daily Captured Videos
dataset to record dynamic human appearance in daily life.
We utilize a mobile phone (Samsung Note 20 Ultra) to
record 15 videos of characters performing various actions,
including self-occlusion movements such as squatting and
rotation. Each video takes about one minute under 30 fps.
Besides, we extract the control signals using openpose [4]
and densepose [11], respectively. This dataset is a valuable
resource for evaluating generation quality, with a particular
emphasis on dynamic appearances.
TikTok Dataset. The TikTok dataset is from social me-
dia dance videos captured from the TikTok application. It
includes more than 300 dance videos that capture a single
person from TikTok dance challenge with various types of
dances. Each video is 10-15 seconds with diverse dance
motions without much blur. Similar to the proposed dataset,
we estimate the keypoints and UV coordinates for each
frame using openpose [4] and densepose [11], respectively.

B. User Study
We conduct a user study to evaluate the subjective percep-
tion of different methods. Specifically, we randomly se-
lect 15 videos from the Daily Captured Videos and Tik-

Figure 10. User Study. We obtain the highest scores.

Algorithm 1 Iterative joint optimization of the implicit
video representation and the pose-guided diffusion results.
Input: implicit video representation model with initiated parameters ϕ,

pose sequence P , coordinates (x, y, n), learning rate l, pose-guided
diffusion modelDp, finetuned autoencoder E , reconstruction lossLrec
and 3D-aware human flow loss Lflow.

1: Steps = 10000
2: Vs = C (D (H (x, y, n)))
3: Vp = Edec (Dp (Eenc (Vs) , P ))
4: for step = 1, . . . , Steps do
5: Ltotal

ϕ = Lrec (Vp, Vs) + Lflow (Vs, P )

6: ϕ← ϕ− l∇ϕLtotal
ϕ

7: if step mod 2000 == 0 then
8: Vp = Edec (Dp (Eenc (Vs) , P ))
9: end if

10: Vs = C (D (H (x, y, n)))
11: end for
Output: Vp

Tok datasets and invite 20 participants (10 males and 10
females) to attend the user study. For a fair comparison,
the user study is conducted in the same environment (room,
display and light). Then, we perform comparisons between
the generated videos of all the methods. The results are pre-
sented in a random order to avoid subjective bias. For each
video, participants are asked to give three separate scores
(1 ∼ 5) in terms of high fidelity, appearance consistency,
and pose alignment. As shown in Fig. 10, our method is
more preferred by human subjects.

C. Algorithm Details
In this paper, we design an iterative joint optimization al-
gorithm in Sec. 4 of the paper. The detailed algorithm is
shown in Algorithm 1. In practice, the optimization itera-
tion interval can be adjusted according to the video length
and pose complexity. For some simple cases, once opti-
mization is able to bring pleasure results.
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Figure 11. Qualitative comparisons of cross-identity driving with Fast-Vid2Vid [66], DreamPose [19] and DisCo [52] on the TikTok
dataset. Zoom in for the best view.

D. More Comparison Results

We show more results in Figs. 11, 12 and 13. Figs. 11
and 12 show the cross-identity driving comparison re-
sults on the TikTok and Daily Captured Videos datasets.
Fig. 13 shows the same-identity driving results on these two
datasets. Note that although DisCo [52] trains the model on
the TikTok dataset and achieves compelling results, it crops
the video to 256 × 256 and focuses on the motion of the
upper body. Therefore, when dealing with the poses on the
whole body, it suffers from performance degradation. More
dynamic results are shown in the video demo.

E. Further Analysis on Core Components

In this section, we provide more analysis on the core com-
ponents (Implicit Video Representation and 3D-aware Hu-

man Flow) in the proposed method. Note that the dynamic
results are shown in the video demo.

E.1. Implicit Video Representation

We further analyze the effect of implicit video representa-
tion (donated as IVR). As mentioned in Sec. 4.3, we add
noise to the latent feature of the IVR results instead of at
the image level. In order to verify the reasonableness of the
latent guidance, we conduct additional experiment settings:
(1) DiffPerformer without optimization (w/o Opt.), (2) op-
timization with the results of diffusion model (Image Opt.),
(3) guiding the diffusion model at image-level as mentioned
in Sec. 4.3 (Noisy Image Opt.), and (4) the complete frame-
work of DiffPerformer (IVR Opt.). The results in Fig. 14
show that the output without optimization is temporally in-
consistent and refining it using the diffusion model directly
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Figure 12. Qualitative comparisons of cross-identity driving with Fast-Vid2Vid [66], DreamPose [19] and DisCo [52] on the Daily Captured
Videos dataset. Zoom in for the best view.

Figure 13. Our generated videos of self-identity driving on the TikTok and Daily Captured Videos datasets. Zoom in for the best view.



Table 2. Quantitative evaluation on test poses.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ L1 ↓ FVD ↓ FID-VID ↓

w/o Opt. 28.99 0.70 0.25 48.90 6.09E-5 24.81 375.45
Image Opt. 28.17 0.63 0.25 44.73 7.03E-5 25.11 432.22
Noisy-Image Opt. 27.35 0.45 0.41 43.12 8.51E-5 58.78 411.69

DiffPerformer (Ours) 30.72 0.69 0.22 36.00 4.33E-5 22.32 254.39

Poses w/o Opt. Smoothed Frames Noisy Image Opt. IVR Opt. (Ours)

Frame #1

Frame #2

Image Opt.

Figure 14. Ablation study of the implicit video representation.
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Figure 15. Illustration of 3D-aware Human Flow.

can not alleviate the issue but causes extra degradation such
as color distortion. Furthermore, adding noise at the im-
age level is unavailable to maintain temporal consistency.
Even worse, it destroys the image content and produces un-
pleasing results. On the contrary, latent guidance not only
preserves image content and style but also exploits the tem-
poral domain properties of the smoothed video to generate
a high-fidelity video with a consistent appearance. Table 2
provides the quantitative comparisons.

E.2. 3D-aware Human Flow

We propose a 3D-aware human flow (donated 3DHF) to
build the correlation between motion and the specific char-

w/o 3DHF with 3DHF w/o 3DHF with 3DHF

Figure 16. Ablation study of 3DHF.

acter, as shown in Fig. 15. To exemplify the effectiveness of
it, we visualize more ablation results in Fig. 16. We find that
the results generated by DiffPerformer without 3DHF ad-
here to the appearance of the performer, but suffer from the
misalignment between driving poses and appearance. We
claim that the reasons are two-fold: (1) The joint optimiza-
tion lacks constraints about the correspondence of poses
and therefore cannot correct the mistakes during the gener-
ation. (2) The initialization of the implicit video represen-
tation provides fixed appearance guidance at the beginning
of the generation, leading to the failure of pose alignment,
especially in large-scale motion. 3DHF can effectively ad-
dress the issue and help the diffusion model generate pose-
alignment results.
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