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Figure 9. Line plot of the impact of different target data sizes.

We evaluated the performance on our 20-class DomainNet (Real
! Painting) classification task. The results illustrate that using as
little as one image per class from the target distribution is sufficient
for DoGE to generate effective training data.

A. Domain Gap Extraction

In this section, we explore more details in the domain gap
extraction process, including different algorithms to capture
the domain gap representation and the impact of sample
sizes available for the extraction step.

A.1. Extraction Methods

In Sec. 3.1, we described two options for our domain gap
extraction algorithms: the difference of means and the
PCA-based method. For analysis, we qualitatively com-
pare DomainNet (Real ! Painting) generations using the
two methods. We visualize the impact of different methods
in Fig. 10. The results show that the difference of means
yields better adaptation effectiveness, i.e. more aligned to
target domains, than the PCA-based method. We adopt the
difference of means as our domain gap representation for
the following experiments.

A.2. Impact of Target Set Size

Besides the extraction algorithm, in our few-shot setting,
the impact of different numbers of target samples available
is also important to study. We evaluated the performances
of our synthetic data generated with domain gap embed-
dings from different numbers of target samples. For analy-
sis, we considered the first 20 classes in DomainNet (Real
! Painting) and evaluated the performance on the 20-class

Algorithm 1 Confidence-Based Data Cleaning

Input: G(x) - Our DoGE data augmenter
f(x) - The downstream task model to improve
(X,Y ) - The source training set data and labels
t - Threshold for confidence-based filtering

1: for batch b with label yb in (X,Y ) do

2: b̂ G(b) . Augment source data to target domain
3: for synthetic sample x̂ with label y in b̂ do

4: p̂ argmax f(x̂) . Model prediction
5: c max f(x̂) . Model confidence
6: if p̂ 6= y and c � t then

7: discard x̂ from b̂
8: f  AdamW(L(f(b̂)) . Update model

Output: f(x) - The adapted and improved model

classification task. We randomly sampled the same number
of images per class from the source and target distributions,
from 1, 2, 10, 30 to 50. Fig. 9 shows using as little as one
image per class (20 images) from the target distribution is
as effective as using 50 images per class (1000 images).

B. Data Cleaning Algorithms

To further explain the training-time confidence-based data
cleaning process in Sec. 3.3, we include Algorithm 1. Given
a model f(x) trained on original training data, we adapt it
by fine-tuning on our synthetic dataset. During fine-tuning,
for each batch of data in the original training set, we pre-
computed the image augmentations with DoGE and denote
the corresponding augmented batch as b̂. For each gener-
ation x̂ 2 b̂ with the original label y, we use the current
model to predict the label p̂ = f(x̂) and compute the con-
fidence as the maximum softmax score among all classes
c = max f(ˆ̂x). Then, we ignore x̂ from this training batch
if the prediction is wrong i.e. p̂ 6= y with high confidence c
over a certain threshold t. After we filter the entire batch as
above, then we fine-tune the model on the cleaned batch.

C. Real-Synthetic Mixing Ratio

While the above data cleaning process filters out poor-
quality samples and improves the usefulness of synthetic
data, the effectiveness of our data is also dependent on
how we leverage them to fine-tune downstream task mod-
els. One important decision is, when fine-tuning task mod-
els, how to take the most advantage of synthetic generations
and the high-quality original training data. Hence we study
the impact of various data mixing ratios during task model
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Figure 10. Synthetic data from different domain gap extraction algorithms. (a) Real source images from DomainNet were converted
into Painting using (b) PCA and (c) the difference of means, shown accordingly. These examples illustrate that (c) is more effective than
(b) in augmenting source (Real domain) images into the target distribution (Painting domain).

UDA methods Test Acc (%)
— + DA-Fusion [71] + DATUM [3] + DoGE

Real! Painting

BSP [11] 46.76 46.78 41.89 47.34

DANN [19] 47.01 48.83 42.73 49.68

CDAN [45] 51.66 51.91 49.87 52.11

MCD [65] 50.88 50.99 49.71 52.14

MCC [35] 50.08 50.42 49.31 52.95

MemSAC [36] 52.27 53.26 50.32 54.16

Real! Clipart

BSP [11] 46.78 45.11 39.43 46.79

DANN [19] 49.80 47.82 42.70 48.11
CDAN [45] 53.93 54.11 50.54 54.53

MCD [65] 51.42 50.79 50.01 54.02

MCC [35] 50.61 49.27 48.10 51.99

MemSAC [36] 54.34 54.59 51.10 55.35

Real! Sketch

BSP [11] 36.47 36.81 28.38 38.49

DANN [19] 38.72 38.45 36.13 40.21

CDAN [45] 42.60 42.23 39.65 43.00

MCD [65] 39.25 38.07 39.19 42.78

MCC [35] 34.38 33.31 33.06 37.23

MemSAC [36] 41.74 40.42 36.54 43.23

Table 8. Test Accuracy of UDA methods on the DomainNet problem. We evaluated existing UDA methods with and without syntheti-
cally supplemented training data; +DA-Fusion, +DATUM and +DoGE denote the methods used for the generation. This table shows that
DoGE, while being compatible with and complementary to UDA methods, is also more effective than the competing methods.
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Figure 11. Bar plot of the impact of different data mixing ra-

tios. We evaluated the performance on our 20-class DomainNet
(Real ! Painting) classification task. The results show that aug-
menting as little as 10% of the training data is sufficient to improve
downstream task model performances.

fine-tuning. For analysis, we used the first 20 classes in Do-
mainNet (Real! Painting) and evaluated the performance
on the 20-class classification task. We changed the ratio of
synthetic to real images in the training dataset from 1:1, 1:5
to 1:10. Fig. 11 shows that expanding the dataset by as little
as 10% can be as effective as adding 100% more data.

D. Complete UDA-Based Comparison

This section extends the brief experiment (Tab. 5) in
Sec. 4.3.1, which shows that DoGE is compatible and com-
plementary to existing UDA methods. We show the full
UDA-based evaluations in Tab. 8, where we also compare
against other baselines DA-Fusion and DATUM on two
more tasks. DoGE successfully improved and surpassed
other baseline UDA evaluations in 17 out of 18 experiments.

E. More Method Ablation

To further isolate the effectiveness of and improvement
from our domain gap embeddings, this section shows more
ablation studies around CLIP and the generation pipeline.

Acc"

zero-shot CLIP 53.53
finetuned CLIP 72.77

Acc" FID#

Ours (noise) 38.97 39.36
Ours (DoGE) 44.00 18.25

Table 9. Evaluation on DomainNet (Real→Painting). (Left) We
evaluated the zero-shot CLIP classifier and finetuned it on our
synthetic dataset to show the effectiveness of our synthetic data.
(Right) We compared embedding augmentation between noises
and DoGE to demonstrate the performance gain.

E.1. Improvement on Top of CLIP

One foundation of the success of DoGE is the vast gen-
eralization capability and knowledge base in the CLIP la-
tent space. However, in this section, we show that off-the-
shelf CLIP is not sufficient against domain shifts. We fo-
cused on the DomainNet Real→Painting experiment setup
in Sec. 4.3.1 and evaluated the zero-shot CLIP classifier
against the CLIP classifier finetuned with our synthetic
dataset in Tab. 9 left. We can see that our synthetic dataset
can effectively improve the zero-shot CLIP classifier further
in domain shifts.

E.2. Domain Gap Embeddings Isolation

This section demonstrates the effectiveness of DoGE by iso-
lating the Domain Gap Embeddings from the rest of the
generation pipeline. Specifically, in the same DomainNet
Real→Painting experiment setup in Sec. 4.3.1, we gen-
erated and evaluated two sets of synthetic datasets. One
dataset generation used the default DoGE pipeline and the
other replaced the injected domain gap embeddings with
small random noises while keeping the rest of generation
pipeline the same. Then we evaluated these datasets in
terms of FID and classification accuracies by finetuning. As
shown in Tab. 9 right, using our domain gap embedding im-
proves both FID and finetuning performance, demonstrating
the effectiveness of DoGE.

F. Comparison to Style Transfer

Given the settings and method of DoGE, it may appear as
a style transfer method. However, our goal, which is gen-
erative semantic data augmentation, is more than just style
transfer. Similar to previous literature cited in the related
works in Sec. 2, our method is designed for any kind of se-
mantic data augmentation within CLIP’s representation ca-
pacity rather than style transfer only. The first experiment in
Sec. 4.2 shows our effectiveness in improving the subpop-
ulation shift problem with object changes. Such augmen-
tations (e.g., adding/removing eyeglasses in Fig. 3) are not
regular style transfer tasks. Moreover, we can solve style
transfer problems in a training-free and diverse fashion.

Nonetheless, existing style transfer methods [20, 48] are
effective in many of our experiments and are important
baselines to evaluate against. In Tab. 10, we evaluate against
other style transfer methods on our GTA!CityScapes ex-
periment in Sec. 4.3.2. The table shows that our generalized
method is as performant as style transfer methods.

[48] [20] Ours

mIoU 44.5 55.37 57.30

Table 10. Evaluation on GTA!CityScapes adaptation task.



G. More Visualizations

In this section, we present more samples of our generation
that were briefly shown in Sec. 4. The generation setup is
the same as mentioned in Sec. 4.1. For each task, we choose
the difference of means as our domain gap representation.
Except for synthetic CelebA data generation, we enable our
ControlNet integration in every other task.

G.1. Imbalanced CelebA Classification

Fig. 12 presents more generated samples for our CelebA
experiment in Sec. 4.2. Recall that in this subpopulation
shift scenario, the source and target distribution differ by
the semantic change of adding/removing eyeglasses in per-
ceived female/male classes, as shown in the top-left corner
of Fig. 12. The rest of the figure shows more synthetic data
in both classes augmented by our pipeline, i.e. males with-
out eyeglasses and females with eyeglasses.

G.2. DomainNet Domain Adaptation

This section presents more visual examples of our Domain-
Net synthetic data used in Sec. 4.3.1. Figs. 13 to 15 dis-
play more of our generation from Real domain to Paint-
ing, Sketch, and Infograph domains. These data were used
to improve classification model performance in our evalu-
ations. Along with the reference target image on the left-
most column, these figures demonstrate the quality and use-
fulness of our synthetic data.

G.3. FMoW Domain Adaptation

To extend the examples of synthetic FMoW data in Fig. 6,
more samples are shown in Fig. 16. As described in
Sec. 4.3.1, we generate recent satellite images from an older
period. Fig. 16 lists 10 categories of land use and our gen-
erated data in each category. The figure illustrates our capa-
bility to generate high-quality satellite images.

G.4. GTA! CityScapes Segmentation

This section shows more generated data used in Sec. 4.3.2.
The original training set is the GTA5 dataset and the tar-
get domain contains realistic driving scenes in CityScapes.
Fig. 17 shows more synthetic examples from DoGE. Since
the segmentation map is available, we also show the con-
trol maps leveraged during the generation with ControlNet
enabled. As the figure shows, the generated image is able
to maintain the same image structure honoring the edge and
segmentation mask constraints.
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Figure 12. More synthetic examples from the CelebA subpopulation shift experiment. On the top-left, we show the (a) source and
(b) target distribution as defined in our experiment setup. The rest of images (c) are synthetic data generated from DoGE. These examples
illustrate our capability of capturing and applying semantic distribution gaps.
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Figure 13. More synthetic examples from the DomainNet Real ! Painting generation. We list more synthetic data generated in our
Real!Painting UDA experiment in Sec. 4.3.1. We randomly select and show 20 classes from DomainNet. For each class, we present
one image from the DomainNet Painting domain as a reference and four of our generations. These examples demonstrate our generation
quality and capability to effectively augment real images into the Painting domain.
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Figure 14. More synthetic examples from the DomainNet Real ! Sketch generation. We list more synthetic data generated in our
Real!Sketch UDA experiment in Sec. 4.3.1. We randomly select and show 20 classes from DomainNet. For each class, we present one
image from the DomainNet Sketch domain as a reference and four of our generations. These examples demonstrate our generation quality
and capability to effectively augment real images into the Sketch domain.
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Figure 15. More synthetic examples from the DomainNet Real ! Infograph generation. We list more synthetic data generated in our
Real!Infograph UDA experiment in Sec. 4.3.1. We randomly select and show 20 classes from DomainNet. For each class, we present
one image from the DomainNet Infograph domain as a reference and four of our generations. These examples demonstrate our generation
quality and capability to effectively augment real images into the Infograph domain.
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Figure 16. More synthetic examples from the FMoW domain adaptation experiment. Following our experiment setup, we augment
satellite images from relatively older periods into more recent times. We randomly select and present 10 classes of land use. For each class
(row), the leftmost column shows randomly selected references from the target domain; the remaining nine images are our synthetic data.
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Figure 17. More synthetic examples from the GTA5 ! CityScapes segmentation experiment. Given the (a) source data from GTA5,
we extract (b) the corresponding edge map. Together with the provided (c) segmentation map, DoGE generated (d) synthetic images that
are closer to the CityScapes data distribution. These examples showcase our generation capability for complex scenes.
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