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A. Qualitative Results
In this section, we present qualitative examples that demon-
strate the performance of our model. For the full set of video
results generated by our model, please see our project page
at https://drive-wm.github.io.

A.1. Generation of Multiple Plausible Futures

Drive-WM can predict diverse future outcomes according to
maneuvers from planners, as shown in Figure 8. Based on
plans from VAD [35], Drive-WM forecasts multiple plausi-
ble futures consistent with the initial observation. We gen-
erate video samples on the nuScenes [7] validation set. The
rows in Figure 8 show predicted futures for lane changes
to left or keep the current lane (row 1), driving towards the
roadside and straight ahead (row 2), and left/right turns at
intersections (row 3).

A.2. Generation of Diverse Multiview Videos

Drive-WM can function as a multiview video generator con-
ditioned on temporal layouts. This enables applications
as a neural simulator for Drive-WM. Although trained on
nuScenes [7] train set, Drive-WM exhibits creativity on the
val set by generating novel combinations of objects, mo-
tions, and scenes.

Normal scenes generation. Drive-WM can generate di-
verse multiview video forecasts based on layout conditions,
as shown for the nuScenes [7] validation set in Figure 9.

Rare scenes generation. It can also produce high-quality
videos for rare driving conditions like nighttime and rain,
despite limited exposure during training, as illustrated in
Figure 10. This demonstrates the model’s ability to gen-
eralize effectively beyond the daytime scenarios dominant
in the training data distribution.

A.3. Visual Element Control

Drive-WM allows conditional generation through various
forms of control, including text prompts to modify global
weather and lighting, ego-vehicle actions to change driv-
ing maneuvers, and 3D boxes to alter foreground lay-
outs. This section demonstrates Drive-WM’s flexible con-
trol mechanisms for interactive video generation based on
user-specified conditions.

Weather & Lighting change. As shown in Figure 11
and Figure 12, we demonstrate the ability of our model to
change weather or lighting conditions while maintaining the
same scene layout (road structure and foreground objects).
Video examples are generated based on the layout condi-
tions from nuScene val set. This ability has great potential
for future data augmentation. By generating diverse scenes
under various weather and lighting conditions, our model
can significantly expand the training dataset, thereby im-
proving the generalization performance and robustness of
the model.

Action control. Our model is capable of generating high-
quality street views consistent with given ego-action sig-
nals. For instance, as shown in Fig. 14, our model cor-
rectly generates turning-left and turning-right videos from
the same initial frame according to the input steering sig-
nals. In Fig. 15, our model successfully predicts the po-
sitions of the surrounding vehicles conforming with both
the accelerating and decelerating signals. These qualita-
tive results demonstrate the high controllability of our world
model.

Foreground control. As Figure 13 shows, Drive-WM en-
ables fine-grained control of foreground layouts in gener-
ated videos. By modifying lateral and longitudinal condi-
tions, high-fidelity images are produced that correspond to
the layout changes specified.

Pedestrian generation poses challenges for street-view
synthesis methods. However, unlike previous work [58, 74],
Figure 16 shows Drive-WM can effectively generate pedes-
trians. The first six images displays a vehicle waiting for
pedestrians to cross, while the second six images shows
pedestrians waiting at a bus stop. This demonstrates our
model’s potential to produce detailed multi-agent interac-
tions.

A.4. End-to-end Planning Results for Out-of-
domain Scenarios

Existing end-to-end planners are trained on expert trajecto-
ries aligned to lane centers. As Figure 2 shows, this causes
difficulties generating off-center deviations, known as the
“lack-of-exploration” problem in behavior cloning [10].
Using Drive-WM for simulation, Figure 18 demonstrates
more planned trajectories deviating from the lane center.
We find the planner from [35] cannot recover when evalu-
ated on these generated out-of-distribution cases. This high-
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Figure 8. Generation of multiple plausible futures based on the planning. Here we only show the front-view videos for better illus-
tration. The video samples are generated based on the first frames from the nuScenes val set. In the first row, we show examples of lane
changing to the left and straight ahead. In the second row, we show cases of driving towards the roadside and driving straight ahead. In the
last row, we present examples of making left and right turns at the intersection.

lights the utility of Drive-WM for exploring corner cases
and improving robustness.

A.5. Using GPT-4V as a Reward Function
To assess the safety of different futures forecasted under
different plans, we leverage the recent GPT-4V model as
an evaluator. Specifically, we use Drive-WM to synthe-
size diverse future driving videos with varying road con-
ditions and agent behaviors. We then employ GPT-4V to
analyze these simulated videos and provide holistic rewards
in terms of driving safety. As illustrated in Figure 17, it
demonstrates different driving behaviors that GPT-4V plans
when there is a puddle ahead on the road. Compared to re-
ward functions with vectorized inputs, GPT-4V provides a
more generalized understanding of hazardous situations in
the Drive-WM videos. By deploying GPT-4V’s multimodal
reasoning capacity for future scenario assessment, we en-
able enhanced evaluation that identifies risks not directly
represented but inferred through broader scene understand-
ing. This demonstrates the value of combining generative
world models like Drive-WM with reward-generating mod-
els like GPT-4V. By using GPT-4V to critique Drive-WM’s

forecasts, more robust feedback can be achieved to eventu-
ally improve autonomous driving safety under diverse real-
world conditions.

A.6. Video Generation on Other Datasets

Waymo Open Dataset. To showcase the wide applicabil-
ity of Drive-WM, we apply it to generate high-resolution
768×512 images on the Waymo Open Dataset. As seen
in Figure 19 and Figure 20, Drive-WM produces realis-
tic and diverse driving forecasts at this resolution with the
same hyper-parameters for nuScenes. By generalizing ef-
fectively to new datasets and resolutions, these Waymo ex-
amples verify that Drive-WM provides a widely adaptable
approach to high-fidelity video synthesis across different
driving datasets.

B. Implementation Details

In this section, we introduce the training & inference details
of joint multiview video model and factorization model.
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Figure 9. Conditional generation of diverse multiview videos. Given layout conditions (3D box, HD map, and BEV segmentation) from
the nuScenes val set, our model is able to generate spatio-temporal consistent multiview videos.

B.1. Joint Multiview Video Model

Training Details. The original image resolution of
nuScenes is 1600 ⇥ 900. We initially crop it to 1600 ⇥
800 by discarding the top area and then resize it to 384 ⇥
192 for model training. Similar to VideoLDM [4], we be-
gin by training a conditional image latent diffusion model.
The model is conditioned on various scene elements, such
as HD maps, BEV segmentation, 3D bounding boxes, and
text descriptions. All the conditions are concatenated in
the token-length dimension. The image model is initialized
with Stable Diffusion checkpoints [49] This conditional im-
age model is trained for 60,000 iterations with a total batch
size of 768. We use the AdamW optimizer with a learning
rate 1 ⇥ 10�4. Subsequently, we build the multiview video
model by introducing temporal and multiview parameters
(Sec. 3.1) and fine-tune this model for 40,000 iterations with
a batch size of 32, with video frame length T = 8. For
action-based video generation, the difference lies only in the
change of condition information for each frame, while the
rest of the training and model structure are the same. We use
the AdamW optimizer [37] with a learning rate 5⇥10�5 for

the video model. To sample from our models, we generally
use the sampler from Denoising Diffusion Implicit Models
(DDIM) [55]. Classifier-free guidance (CFG) reinforces the
impact of conditional guidance. For each condition, we ran-
domly drop it with a probability of 20% during training. All
experiments are conducted on A40 (48GB) GPUs.

Inference Details. During inference, the number of sam-
pling steps is 50, and we use stochasticity ⌘=1.0, CFG=5.0.
For video generation, we use the first frame as the condi-
tion to generate subsequent video content. Similar to Vide-
oLDM [4], we use the generated frame as the subsequent
condition for long video generation.

B.2. Factorization Model
Training implementation of factorization. The imple-
mentation is overall similar to the implementation of the
joint modeling in Sec. B.1. For the factorized generation,
we additionally use reference views as extra image condi-
tions.

Taking nuScenes data as an example, we first sort
the six multiview video clips clockwise, denoted as
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Figure 10. Rare scenes generation. Top two rows: night scenarios. Bottom two rows: rainy scenarios.

Figure 11. Weather change generation. The top row displays sunny daylight scenes. The bottom row shows the same layouts rendered
as rainy scenes, demonstrating conditional generation capabilities.

x0 to x5. Then a training sample is defined as
{x(i�1) mod 6,xi,x0

i
,x(i+1) mod 6}. where xi is the

stitched view randomly sampled from all six views, and
{x(i�1) mod 6,x(i+1) mod 6} is a pair of reference view.
x0
i

is the previously generated frame of i-th view, which
also serves as an additional image condition. The train-
ing pipeline is very similar to the joint modeling, while
here we generate a single view every iteration instead of
multiple views. As can be seen from the training sample
{x(i�1) mod 6,xi,x0

i
,x(i+1) mod 6}, we have view dimen-

sion N = 1 for the single stitch view xi in training.

Inference of factorization. During inference, we pre-
define some views as the reference views, and the corre-
sponding videos of these reference views are first gener-
ated by the joint model. Then we generate the videos of
stitched views conditioned on the paired reference video
clips and previously generated view (i.e., x0

i
). Particularly,

in nuScenes, we select F, BL, BR
3 as reference views.

3F: front; B: back; L: left; R: right



Figure 12. Lighting change generation. The top row displays daytime scenes. The bottom row shows the same layouts rendered as
nighttime scenes, demonstrating conditional generation capabilities.

Far away Close In the left In the right Removed

Figure 13. Control foreground object layouts. By modifying the positions of 3D boxes, high-fidelity images are produced that correspond
to the layout changes specified.

The three reference views constitute three pairs, serving
as the condition for three stitched views. For example,
our model generates front-left views conditioning on front
views, back-left views, and previously generated front-left
views. The inference parameters are the same with Sec. B.1.

C. Data
In this section, we first describe the dataset preparation and
then introduce the curation of the dataset to enhance the
action-based generation.

C.1. Data Preparation
NuScenes Dataset. The nuScenes dataset provides full
360-degree camera coverage and is currently a primary
dataset for 3D perception and planning. Following the offi-
cial configuration, we use 700 street-view scenes for train-
ing and 150 for validation. Next, we introduce the process-
ing of each condition. For the 3D box condition, we project
the 3D bounding box onto the image plane, utilizing oc-
tagonal corner points to depict the object’s position and di-
mensions, while colors are employed to distinguish differ-
ent categories. This ensures accurate object localization and

discrimination between different objects. For the HD map
condition, we project the vector lines onto the image plane,
with colors indicating various types. In terms of the BEV
segmentation, we adhere to the generation process outlined
in CVT [77]. This process generates a bird’s-eye view seg-
mentation mask, which represents the distribution of differ-
ent objects and scenery in the scene. For the text condition,
we sift through information provided in each scene descrip-
tion. For the planning condition, we utilize the ground truth
movement of the ego locations for training, and the planned
output from VAD [35] for inference. This allows the model
to learn from accurate ego-motion information and make
predictions that are consistent with the planned trajectory.
Finally, for the ego-action condition, we extracted the infor-
mation of vehicle speed and steering for each frame.

The Waymo Open Dataset. The Waymo Open
Dataset [57] is a well-known large-scale dataset for
autonomous driving. We only utilize data from the ”front”
camera to train the video model, with an image resolution
of 768 ⇥ 512 pixels. For the map condition, we follow the
data processing in OpenLane [9].



Figure 14. Diverse turning behaviors. Utilizing an identical initial frame, we provide our model with sequences of positive steering
angles (indicating a left turn) and negative values (indicating a right turn). The figure demonstrates the model’s proficiency in generating
consistent street views for both turning behaviors. Each frame is accompanied by a blue bar, indicating the corresponding steering angle in
degrees. A longer bar correlates with a more substantial steering angle. For clarity, only the front view is shown.

Figure 15. Diverse speeding behaviors. We input different patterns of speed signals into our model to assess controllability in terms of
speed. The top series shows that the ego car decelerates and then accelerates while the bottom one shows a contrary behavior. These two
results highlight the realism of our model’s prediction.

C.2. Data Curation

The ego action distribution of the nuScenes dataset is heav-
ily imbalanced: a large proportion of its frames exhibit
small steering angles (less than 30 degrees) and a normal
speed in the range of 10-20 m/s. This imbalance leads to
weak generalizability to rare combinations of steering an-
gles and speeds.

To alleviate this negative impact, we balance our train-
ing dataset by re-sampling rare ego actions. Firstly, we split
each trajectory into several clips, each of which demon-
strates only one type of driving behavior (i.e., turning left,
going straight, or turning right). This process results in 1048
unique clips. Afterward, we cluster these clips by digitizing
the combination of average steering angles and speeds. The
speed range [0, 40] (m/s) is divided into 10 bins with equal
lengths. Extreme speeds greater than 40 m/s will fall into
the 11th bin. The steering angle range [-150, 150] (degree)
is divided into 30 bins with equal lengths. Likewise, ex-
treme angles greater than 150 degrees or less than -150 de-
grees will fall into another two bins, respectively. We plot
the ego-action distribution resulting from this categorization
in Fig. 21.

To balance the action distribution of these clips, we sam-
ple N = 36 clips from each bin of the 2D 32⇥ 11 grid. For
a bin containing more than N clips, we randomly sample

N clips; For a bin containing fewer than N clips, we loop
through these clips until N samples are collected. Conse-
quently, 7272 clips are collected. The action distribution
after re-sampling can be seen in Fig. 21.

D. Metric Evaluation Details
D.1. Video Quality
To evaluate the quality of the generated video, we utilize
FID (Frechet Inception Distance) [29] and FVD (Frechet
Video Distance) [62] as the main metrics. The FID and
FVD calculations are performed on 150 validation video
clips from the nuScenes dataset. Since our model can gen-
erate multiview video, we break it down into six views of
video for evaluation. We have a total of 900 video segments
(around 40 frames) and follow the calculation process de-
scribed in VideoLDM [4]. For FID calculation on videos,
we randomly select 10,000 frames for evaluation. We use
the official UCF FVD evaluation code4.

D.2. Controllability Evaluation
To assess the controllability of video content generation,
we evaluate generated images using pre-trained perception
models. Following the previous method [74], we adopted

4
https://github.com/SongweiGe/TATS/

https://github.com/SongweiGe/TATS/


Figure 16. Pedestrian generation examples. Previous methods are difficult to generate pedestrians.

The image depicts an overcast day with wet 
road conditions. There are areas of standing 
water on the road.
- Avoiding Puddles: Steering around large 
puddles. Reward: Positive.
- Driving Through Puddles: If unavoidable, 
slowing down before entering the puddle to 
reduce the risk. Reward: Positive; However, 
if done at high speed, it could lead to loss of 
control. Reward: Negative. 

Describe the road surface condition first, 
please provide potential driving behaviors 
and the corresponding rewards. 

Figure 17. Using GPT-4V as a reward function. GPT-4V could give more reasonable rewards in cases such as there is a puddle ahead on
the road.

CVT [77] for foreground and background segmentation.
Additionally, we evaluate 3D object detection [67] and on-
line map construction [43]. Here, due to the disparity be-
tween the input image size for the perception model and
the generated image size, we resize the generated images
to match the dimensions of the original images for infer-
ence. The performance evaluation of the GT (real image)
is conducted by down-sampling real images to match the

resolution of the generated images for the fair comparison.

D.3. Planning Evaluation

We follow open-loop evaluation metrics [34, 35] for end-to-
end planning, including L2 distance from the GT trajectory
and the object collision rate.
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Figure 18. Videos demonstrating the VAD planning results under normal and out-of-domain cases. We shift the ego location 0.5m to
the right to create an out-of-domain case. The top row of each scene: the reasonable trajectory prediction of the VAD method under normal
data. The bottom row of each scene: the irrational trajectory when encountering out-of-distribution cases.

Figure 19. Generation of High-Resolution Image on Waymo Open Dataset. We showcase the image generation results for a wide range
of traffic density, driving scenarios, lighting, and weather conditions.

D.4. KPM Illustration

As mentioned in Sec. 5.1, we introduced the KPM score
metric for measuring multiview consistency for generated

images, which are not considered in both FID and FVD
metrics. In the calculation process, for each image, we first
compute the number of matched key points between the cur-
rent view and its two adjacent views. Subsequently, we cal-
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Figure 20. Generation of High-Resolution Video on Waymo Open Dataset. We showcase the video generation results in highly
interactive driving scenarios like closely following the front car in heavy traffic (top) or waiting for pedestrians to cross the road.

Figure 21. The ego-action distribution before (left) and after re-sampling (right). We re-sample rare combinations of speeds and
steering angles, obtaining a balanced training dataset.

culated the ratio between the number of matched points in
generated data and the number of matched points in real
data. Finally, we averaged these ratios across all generated
images to obtain the KPM score. In practice, we uniformly
selected 8 frames per scene in the validation set to calculate
KPM.

As shown in Figure 22, we demonstrate the keypoint
matching process. The blue points are the keypoints in the
overlapping regions on the left/right side of the image. The
green lines are the matched points between the current view
and its two adjacent views using the LoFTR [56] matching
algorithm.

E. Future Work
In the future, there are two main research directions. In-
spired by GAIA-1 [33], one is to scale up data; richer data
can enable models to possess stronger generation capabili-
ties, thereby better envisioning various out-of-distribution
(OOD) cases. The second is to consider the practicality
of world models, which requires compatibility with more
planners and faster inference speeds. Currently, the compu-
tation cost of video generation remains a challenging issue,
and we will explore further in the future.



Figure 22. Illustration of keypoint matching in KPM calculation. The blue points are the image keypoints in the overlapping regions
on the left/right side of the image. The green lines are the matched keypoints between the current view and its two adjacent views using
the LoFTR [56] matching algorithm.
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