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7. Full Comparison with Existing Egocentric
Pose Estimation Methods

The comparison results between our method and all previ-
ous methods [30, 36, 47, 50–52, 54] are shown in Tab. 5
and ??. “*” indicates that the methods are re-trained with
our EgoWholeBody training dataset. In this experiment,
since the GlobalEgoMocap [50] can be applied to refine
the egocentric human body motion predicted from any ego-
centric pose estimation method, we base the method on
Mo2Cap2 [54] following the original setting in GlobalEgo-
Mocap [50]. We also do not show the GlobalEgoMocap
results in Mo2Cap2 test dataset [54] since it does not pro-
vide egocentric camera poses for all of the sequences. Note
that our EgoWholeBody dataset does not contain ground
truth scene geometry annotations, therefore we freeze the
weights of the depth estimation module in SceneEgo [52]
and only train the human pose estimation part.

From the results in Tab. 5, we can show our single-frame
method and our refinement method consistently outper-
forms all of the previous methods, even if they are trained
on our new dataset, which further strengthens the claim in
our experiment section (Sec. 5.2).

8. Fisheye Camera Model
In this section, we describe the projection and re-projection
function of Scaramuzza’s fisheye camera model [41] as fol-
lows:

The projection function P(x, y, z) of a 3D point
[x, y, z]T in the fisheye camera space into a 2D point [u, v]T

on the fisheye image space can be written as:

[u, v]T = f(ρ)
[x, y]T√
x2 + y2

(7)

where ρ = arctan(z/
√
x2 + y2) and f(ρ) = k0 + k1ρ +

k2ρ
2 + k3ρ

3 + . . . is a polynomial obtained from camera
calibration.

Given a 2D point [u, v]T on the fisheye images and the
distance d between the 3D point [x, y, z]T and the camera,
the position of the 3D point can be obtained with the fisheye
reprojection function P−1(u, v, d):

[x, y, z]T = d
[u, v, f ′(ρ′)]T√

u2 + v2 + (f ′(ρ′))2
(8)

where ρ′ =
√
u2 + v2 and f ′(ρ) = k′0+k′1ρ+k′2ρ

2+k′3ρ
3+

. . . is another polynomial obtained from camera calibration.

Method MPJPE PA-MPJPE
SceneEgo test dataset [52]
Mo2Cap2 [54] 200.3 121.2
GlobalEgoMocap† [50] 183.0 106.2
xR-egopose [47] 241.3 133.9
EgoPW [51] 189.6 105.3
SceneEgo [52] 118.5 92.75
Mo2Cap2* [54] 92.20 66.01
GlobalEgoMocap*† [50] 89.35 63.03
xR-egopose* [47] 121.5 98.84
EgoPW* [51] 90.96 64.33
SceneEgo* [52] 89.06 70.10
Ours-Single 64.19 50.06
Ours-Refined† 57.59 46.55
Method PA-MPJPE BA-MPJPE
GlobalEgoMocap test dataset [50]
Mo2Cap2 [54] 102.3 74.46
xR-egopose [47] 112.0 87.20
GlobalEgoMocap†[50] 82.06 62.07
EgoPW [51] 81.71 64.87
EgoHMR [30] 85.80 –
SceneEgo [52] 76.50 61.92
Mo2Cap2* [54] 78.39 63.48
GlobalEgoMocap*† [50] 75.62 61.06
xR-egopose* [47] 106.3 79.56
EgoPW* [51] 77.95 62.36
SceneEgo* [52] 76.51 61.74
Ours-Single 68.59 55.92
Ours-Refined† 65.83 53.47
Mo2Cap2 test dataset [54]
Mo2Cap2 [54] 91.16 70.75
xR-egopose [47] 86.85 66.54
EgoPW [51] 83.17 64.33
Ego-STAN† [36] 102.4 –
SceneEgo [52] 79.65 62.82
Mo2Cap2* [54] 79.76 63.53
xR-egopose* [47] 84.92 65.39
EgoPW* [51] 78.01 62.37
SceneEgo* [52] 79.32 62.77
Ours-Single 74.66 59.26
Ours-Refined† 72.63 57.12

Table 4. Performance of our method on three different test
datasets. Our method outperforms all previous state-of-the-art
methods. ∗ denotes the method trained with the datasets in
Sec. 5.1. † denotes the temporal-based methods.

The calibration of the fisheye camera and more details about
the fisheye camera model can be found in Scaramuzza et
al. [41].



Method MPJPE PA-MPJPE
Mo2Cap2* [54] 89.75 74.32
GlobalEgoMocap*† [50] 86.44 66.76
xR-egopose* [47] 118.2 94.33
EgoPW* [51] 84.21 63.02
SceneEgo* [52] 87.57 69.46
Ours-Single 66.28 43.14
Ours-Refined 60.32 40.35

Table 5. Performance of our method on our EgoWholeBody
test datasets. Our method outperforms all previous state-of-the-
art methods. ∗ denotes the method trained with the datasets in
Sec. 5.1. † denotes the temporal-based methods.

Note that a number of different fisheye camera models
exist and our method does not depend on one specific fish-
eye camera model.

9. Implementation Details
In this section, we describe the implementation details of
our methods. We use NVIDIA RTX8000 GPUs for all ex-
periments.

9.1. FisheyeViT and Pose Regressor with Pixel-
Aligned 3D Heatmap

9.1.1 Network Structure

FisheyeViT In FisheyeViT, we first undistort the image
patches with the method described in Sec. 3.1.1, then put
the patches into a ViT transformer. In the ViT transformer,
the embedding dimension is 768, the network depth is 12,
the attention head number is 12, the expansion ratio of the
MLP module is 4, and the drop path rate is 0.3. The output
sequence from the transformer (with a length equal to 256)
is reshaped to a 2D feature map with size 16× 16.

Pose Regressor with Pixel-Aligned 3D Heatmap In the
pixel-aligned heatmap, we first use two deconvolutional
modules to up-sample the feature map from the FisheyeViT.
The first deconv module contains one deconv layer with 768
input channels and 1024 output channels, one batch nor-
malization layer, and one ReLU activation function. The
deconv layer’s kernel size is 4, the stride is 2, the padding
is 1, and the output padding is 0. The second deconv mod-
ule contains one deconv layer with 1024 input channels and
15×64 output channels, one batch normalization layer, and
one ReLU activation function. The hyper-parameters of the
deconv layer in the second module are the same as that in
the first one.

These deconvolutional modules converts the features
from shape (C × N × N) = (768 × 16 × 16) to shape
(J × Dh ×Hh ×Wh) = (15 × 64 × 64 × 64). Then the
soft-argmax function and fisheye reprojection function are
applied to get the final body pose prediction.

9.1.2 Training Details

In this section, we introduce the training of our single-frame
human body pose estimation network, i.e. the FisheyeViT
and pose regressor with pixel-aligned 3D heatmap. The
ViT network in FisheyeViT is initialized with the training
weight from ViTPose [55] and the pose regressor is initial-
ized with normal distribution, whose mean is 0 and standard
deviation is 1. The network is trained on the combination
dataset of EgoWholeBody and EgoPW. The ratio between
the EgoWholeBody and EgoPW datasets is 9:1. The net-
work is trained for 10 epochs with a batch size of 128, a
learning rate of 1e−4 with the Adam optimizer.

9.2. Hand Detection Network

As described in Sec. 3.1.3, we use our EgoWholeBody
dataset for training the ViTPose network to regress the
heatmap of 2D hand joints. Based on the 2D hand joint
predictions, we get the center Clh, Crh, and the size dlh,
drh of the square hand bounding boxes. We use the ViT-
Pose network for the simplicity of implementation. Other
detection methods can also be used for training the hand
detection network. Taking the left hand as an example, we
use the bounding center Clh as the image patch center in
Step 1 of FisheyeViT (Sec. 3.1.1) and use the half of the
bounding box size dlh/2 as the offset d in Step 2. After
obtaining the projected points of bounding box center Pc

lh

and the bounding box edge Px
lh on the tangent plane Tlh,

we set the l in Step 3 as two times of the Euclidean dis-
tance between Px

lh and Pc
lh. Following Step 4, we get the

undistorted hand image crop of the left hand Ilh.
The hand detection network is trained for ten epochs

with a batch size of 128 and a learning rate of 1e−4 with
the Adam optimizer.

9.3. Hand Pose Estimation Network

As described in Sec. 3.1.3, we train the hand-only
Pose2Pose network in Hand4Whole method [34] with
EgoWholeBody training dataset to regress the 3D hand pose
from hand image crops. During training, we only use the
ground truth 3D hand joint positions as supervision to fine-
tune the Pose2Pose network that has been pretrained on the
FreiHAND dataset [67]. The hand pose estimation network
is fine-tuned for ten epochs with a batch size of 128 and an
initial learning rate of 1e−5 with the Adam optimizer.

9.4. Diffusion-Based Motion Refinement

In Sec. 3.2, we use the transformer decoder in EDGE [48] as
our diffusion denoising network. We disable the music con-
dition in EDGE [48] by replacing the music features with a
learnable feature vector that is agnostic to input. Here we
describe the training details and the refinement details of
our diffusion model.



9.4.1 Training Details

In this section, we describe the details of training the DDPM
model [18] for learning the whole-body motion prior. Given
a whole-body motion sequence with 196 frames from train-
ing datasets (Sec. 5.1) represented with joint locations of
the human body (with shape 15× 3) and hands (with shape
21× 3), we transform all poses to the pelvis-related coordi-
nate system and align them to make the human body poses
facing forward, obtaining the aligned whole-body motion
sequence x. The motion sequence x is normalized and sent
to the DDPM model for training. During training, we ran-
domly sample a diffusion step t ∈ {0, 1, ..., T −1}, and use
the diffusion forward process to generate the noisy motion
xt. Here the T is the maximal diffusion step and we set T as
1000. We finally run the denoising network to get the origi-
nal motion x̂ and compare the reconstructed human motion
x̂ and the original human motion xt with Eq. (4). The net-
work is trained for thirty epochs with a batch size of 256 and
an initial learning rate of 2e−4 with the Adam optimizer.

9.4.2 Refinement Details

After obtaining the trained diffusion model, we follow
Sec. 3.2.2 to refine the input whole-body motion. Here we
describe how to obtain the uncertainty values for each joint
in the human body and hands. We smooth the 3D heatmap
predictions with Gaussian smoothness. The standard de-
viation of the Gaussian kernel is 1. Then we get the 3D
heatmap values HM at the predicted joint locations with
the bilinear interpolation. The heatmap values HM are
firstly normalized to range [0, 1] by making the maximal
value of HM equal to 1. The uncertainty values u is ob-
tained with:

u = 0.05× (1−HM) (9)

In this case, the maximal uncertainty value is 0.05. This
value is empirically defined to limit the effect of the stochas-
tic diffusion process in motion refinement.

10. Synthetic Dataset Comparisons

Compared to other egocentric motion capture training
datasets, the EgoWholeBody dataset offers several notable
advantages (also see Table 6):

Larger Amount of Frames: EgoWholeBody contains a
substantially larger quantity of frames, providing an exten-
sive and diverse dataset for training.

Inclusion of Hand Poses: Unlike other datasets, EgoW-
holeBody includes hand motion data, making it suitable for
egocentric whole-body motion capture.

High Diversity in Motions and Backgrounds: The
dataset captures a wide range of human motions and diverse
background settings, reflecting real-world scenarios.

Figure 6. Examples of our synthetic dataset EgoWholeMocap.
The upper row shows the data rendered with Renderpeople mod-
els [3], the lower row shows the data rendered with SMPL-X mod-
els [37].

Publicly Available Models, Motions, and Back-
grounds: The models, motions, and backgrounds are
all publicly available. Additionally, the data generation
pipeline will be made public, enabling researchers to repro-
duce or modify the dataset for various different tasks.

These advantages position EgoWholeBody as a valuable
resource for advancing research in egocentric whole-body
motion capture.

To show the quality of our synthetic dataset, we also vi-
sualize some examples of our synthetic EgoWholeMocap
dataset in Fig. 6.

11. Details of Evaluation Metrics
In this section, we give a detailed explanation of the evalu-
ation metrics used in our method. Mean Per Joint Position
Error (MPJPE) is the mean of Euclidean distances for each
joint in the predicted and ground truth poses.

For the Mean Per Joint Position Error with Procrustes
Analysis (PA-MPJPE), we rigidly align the estimated pose
to the ground truth pose with Procrustes analysis [24] and
then calculate MPJPE.

We also evaluate the BA-MPJPE, i.e. the MPJPE with
aligned bone length. For BA-MPJPE, we first resize the
bone length of predicted poses and ground truth poses to
the bone length of a standard human skeleton. Then, we
calculate the PA-MPJPE between the two resulting poses.

12. Details of Evaluation Datasets
In our experiment in Sec. 5.2, we use three evaluation
datasets including SceneEgo test dataset [52], GlobalEgo-
Mocap test dataset [50] and Mo2Cap2 test dataset [54].

The SceneEgo test dataset contains around 28K frames
of 2 persons performing various motions such as sitting,
walking, exercising, reading a newspaper, and using a com-
puter. This dataset provides ground truth egocentric camera
pose so that we can evaluate MPJPE on it. This dataset is



Training Dataset Motion
Diversity

Frame
Numbers

Motion Type Image Quality Annotation Type

EgoPW [51] low 318 k body motion real-world pseudo ground truth
ECHP [29] low 75 k body motion real-world pseudo ground truth
Mo2Cap2 [54] middle 530 k body motion low ground truth
xR-EgoPose [47] middle 380 k body motion realistic ground truth
EgoGTA [52] low 320 k body motion low ground truth
EgoWholeBody high 870 k body + hands motion realistic ground truth

Table 6. Comparison between different training datasets for egocentric body pose estimation.

evenly split into training and testing splits. We finetuned
our method on the training split before the evaluation.

The GlobalEgoMocap test dataset [50] contains 12K
frames of two people captured in the studio. The Mo2Cap2

test dataset [54] contains 2.7K frames of two people cap-
tured in indoor and outdoor scenes. These two datasets do
not provide ground truth egocentric camera poses, thus we
first rigidly align the predicted body poses and ground truth
body poses and then evaluate PA-MPJPE and BA-MPJPE.

13. The Standard Deviation of Refinement
Method

As described in Sec. 5.2, we generate five samples and cal-
culate the mean and standard deviations of the MPJPE val-
ues. The results are shown in Tab. 7. From the results, we
can see the standard deviations of our results are all around
0.003 mm, which is quite small. We suppose that the stan-
dard deviations of our results are small for two reasons:

First, our diffusion process is guided by the low-
uncertainty joints. The low-uncertainty joints are more
likely to follow the initial motion estimations xe and guide
the diffusion denoising process of other joints to obtain sim-
ilar values.

Second, according to Eq. (9), the maximal uncertainty
value is 0.05 (the actual uncertainty value can be even
smaller), which means that when k = 0.1 in Eq. (6), the
w ∼ 1 when t = 100 for all joints:

w = 1/
(
1 + e−0.1(100−1000×0.05)

)
= 0.9933 (10)

This shows that when t is large enough, the denoising pro-
cess is always initialized by the estimated motion xe and
the refinement starts when t < 100. When t < 100, the
Gaussian noise added in Eq. (5) is relatively small. This
also means that we can start from diffusion step t = 200 for
accelerating the diffusion refinement steps.

14. Different Parameters in Weight Function
In this section, we analyze the effectiveness of parameter
k in the weight function Eq. (6). We suppose that the un-
certainty value of one specific joint is 0.02, then we draw

Dataset MPJPE PA-MPJPE
SceneEgo-Body 57.59±0.003 46.55±0.003
SceneEgo-Hands 19.37±0.002 9.05±0.002
Dataset PA-MPJPE BA-MPJPE
GlobalEgoMocap 65.83±0.003 53.47±0.002
Mo2Cap2 72.63±0.003 57.12±0.003

Table 7. The mean and standard deviations of our refinement
method. “SceneEgo-Body” and “SceneEgo-Hands” show the
body and hand results on the SceneEgo dataset. “GlobalEgoMo-
cap” and “Mo2Cap2” shows the human body results on the Glob-
alEgoMocap and Mo2Cap2 datasets.

Method MPJPE PA-MPJPE
k=0.01 58.41±0.001 46.92±0.001
k=0.1 57.59±0.003 46.55±0.003
k=1 59.90±0.006 48.57±0.006

Table 8. Comparison with Spherenet and Panoformer.

the w-t figure in Fig. 7. We can observe that when t → 0,
the weight w is still large when k = 0.01. In this case, the
initial pose predictions xe will significantly affect the final
refinement result. When the k = 1, the weight w ∼ 0 when
t < 15, which makes the diffusion model generate freely
without any guidance of the initial joint estimations. This
will make the refined motion largely deviate from the ini-
tial joint estimations. In our method, we choose a moderate
k = 0.1, such that the diffusion refinement process can be
initially guided by the whole-body pose estimations xe and
finally refined through the generation of diffusion denoising
process.

We also show the results under different k values
in Tab. 8. The results show that the accuracy of human body
poses is the best when k = 0.1. We also observe that the
standard deviations become larger when k is larger. This
also demonstrates the above analysis.



k = 0.01

k = 0.1

k = 1

Figure 7. The weight function with different hyper-parameters k.
The x-axis is the diffusion time step t and the y-axis is the weight
w.

15. Comparision with networks for panorama
images

Recent studies [11, 26, 56–58] have adopted various ap-
proaches to address fisheye image distortion within deep
learning frameworks. Yet, these strategies are tailored to
tasks distinctly different from 3D human pose estimation,
such as object detection [11] and depth estimation [26].

Nevertheless, we compare our FisheyeViT network with
two other methods dealing with camera distortions, the
SphereNet [11] and the OmniFusion [26]. In this exper-
iment, we replace our FisheyeViT with the SphereNet and
OmniFusion networks. In SphereNet, we limit the sampling
range to the semi-sphere. In OmniFusion, we use the output
of the transformer network as the image features and put the
image features into our pose regressor. We evaluate the ac-
curacy of the estimated human body pose on the SceneEgo
dataset. The results are shown in Table 9, which demon-
strates that our FisheyeViT performs better than the previ-
ous methods for the distorted images. This might caused by
the different patch sampling strategy: our method samples
the image patches on the fisheye image uv space, while pre-
vious methods samples the patches on the rθϕ sphere coor-
dinate system. Our method can generate patches that align
well with the layout of egocentric fisheye images and match
the design of our pixel-aligned 3D heatmap as mentioned
in the introduction: “the voxels in the 3D heatmap directly
correspond to pixels in 2D features, subsequently linking
to image patches in FisheyeViT”. However, sampling in the
rθϕ sphere coordinate system will cause discontinuity due
to the coordinate singularity of the sphere coordinate sys-
tem. For example, the neighboring pixels on the fisheye
image can be assigned to two patches far away from each

Method MPJPE PA-MPJPE
SphereNet [11] 90.72 75.07
OmniFusion [26] 86.58 70.69
Ours-Single 64.19 50.06

Table 9. Comparison with Spherenet and Panoformer.

other.

16. Replacing the Pixel-Aligned 3D Heatmap
to MLP

In this section, we replace our pose regressor with the pixel-
aligned 3D heatmap with a simple MLP network. The fea-
tures extracted with FisheyeViT, with shape (768×16×16)
are firstly flattened and we further use two MLP layers to
regress the 3D human body poses. The first layer con-
tains one fully connected layer with an output dimension of
1024, one batch normalization layer, and one ReLU activa-
tion layer. The second layer contains one fully connected
layer with an output dimension of 15 × 3. The MPJPE
and the PA-MPJPE on the SceneEgo dataset are 130.7 mm
and 73.91 mm respectively. This demonstrates the effec-
tiveness of our egocentric pose regressor with pixel-aligned
3D heatmap.

17. Compare with Gaussian Smooth

In this section, we compare our diffusion-based motion
refinement method with the simple Gaussian smoothness.
The MPJPE and the PA-MPJPE on the SceneEgo dataset are
62.68 mm and 48.87 mm respectively. This demonstrates
that our refinement method performs better than the Gaus-
sian smooth approach. This shows that our method relies
on motion priors to guide the refinement of human motion,
making it more effective than the simple smoothing tech-
niques.

18. Egocentric Camera Setup

We use the same egocentric camera setup as previous meth-
ods [50–52, 54]. In this setup, one down-facing PointGrey
fisheye camera is mounted in front of the head. The illus-
tration is shown in Fig. 8.

19. Limitations

Due to serious self-occlusion issues, our method may still
predict poses suffering from physical implausibility. This
can be solved by introducing the physics-aware motion dif-
fusion models or motion refinement models, such as Phys-
Diff [61] and PhysCap [43].



Egocentric camera setup Egocentric view

Figure 8. The setup of the egocentric fisheye camera and one ex-
ample of the egocentric image.

20. More Visualization Results
Here we show more results of our methods in Fig. 9 and
Fig. 10.
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poses from Hand4Whole [34] method. The red skeleton is the ground truth while the green skeleton is the predicted pose.
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