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1. Implementation Details

In the main paper, we focus on the overall design of our
baseline framework and the benchmark results. Here, we
further provide the implementation details of Embodied
Perceptron and other baselines on our benchmark.

1.1. Embodied Perceptron

Input. Except for the monocular task, given the memory
usage of different tasks, we set different numbers of input
images during training and inference. Specifically, we set
the number of input images to 20 and 50 for training and
inference of multi-view 3D detection and visual grounding
experiments while reducing the number to 10 for training
continuous 3D detection models. For occupancy experi-
ments, we set the number to 10 and 20 for training and in-
ference. In addition, due to different resolutions of images
from different source datasets, we resize them to 480× 480
for unification and conduct corresponding transformations
when computing the projection from points to images.

For depth maps, after converting them to point clouds,
we first sample the points to limit their maximum number
to 100k [14]. Then we voxelize them and feed them into the
sparse convolutional networks. We set the voxel size to 0.01
meters for 3D detection following the convention of previ-
ous works [14]. In contrast, since we only use the last-level
voxel feature (64× downsampled) to construct the feature
volume, the voxel size is set to 0.16/64=0.0025 meters to
ultimately predict the 40 × 40 × 16 occupancy (the output
voxel size is 0.16 meters). Finally, we summarize the set-
tings of different benchmarks in Tab. 1.
Multi-Modal 3D Encoder. As mentioned in the main pa-
per, we use the classical encoders for different modalities
at the beginning, i.e., a shared ResNet50 [6] for multi-view
images, MinkResNet34 [4] for point clouds derived from

Table 1. Benchmark inputs & outputs.

Benchmark Inputs Outputs
Cont. 3D Perception Ordered 1∼ N Views Visible 3D Boxes/Occ.
MV 3D Perception Random N Views All the 3D Boxes/Occ.

Mono. 3D Detection 1 Monocular View Visible 3D Boxes
3D Visual Grounding Random N Views & Prompt Target 3D Object Box

depth maps, and RoBERTa-Base [7] for texts. Here, we re-
duce the base channels in ResNet to 16 to make it consistent
with MinkResNet34, resulting in {128, 256, 512, 1024}
multi-level feature channels after sparse fusion. In contrast,
for dense fusion, we keep the original setting of ResNet, use
FPN to enhance the 2D features (256 channels) to derive
the 3D feature volume, and finally concatenate it with the
densified last-level voxel feature V4 (512 channels), result-
ing in 768-channel dense feature for subsequent occupancy
prediction. For different outputs, the current encoder design
has shared separated encoders but minor differences during
fusion. How to further unify them and how it could bene-
fit multi-task training and pre-training would be intriguing
problems to be explored in the future.
Spare & Dense Decoder. We basically follow
FCAF3D [14] in 3D detection head designs but adapt it to
be compatible with oriented 3D boxes. It generates pre-
dictions based on sparse voxel seeds and assigns targets
to them according to several rules during training, such as
whether the voxel center is inside a box and assigning it
to the best feature level similar to FCOS [18, 19]. Please
see more details in its original paper. Here, all the compu-
tations regarding the distance between centers, points, and
six faces and box formulations mentioned in the main paper
are modified to fit the 3-DoF rotation version.

For the dense decoder, we first use a 3D FPN [15] to fil-
ter the 3D dense feature and compress the feature channel
to 128. The output multi-level features in three resolutions,
from 40× 40× 16 to 10× 10× 8, are fed into three occu-
pancy prediction heads, which share the same architecture,
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a 3D convolutional layer with kernel size and stride set to
1, to produce the multi-scale results. The training objective
and loss are similar to SurroundOcc [20] for supervising
the multi-scale output. During inference, we only take the
high-resolution output as the final prediction.

For the visual grounding decoder, we adopt several trans-
former layers to fuse the 3D sparse feature and text feature.
Similar to GroupFree3D [8], we refine the position encod-
ing of an object candidate stage by stage. Specifically, we
predict the 3D box locations at each decoder layer, and the
predicted box location will be used to produce the updated
position encoding of the same query. The queries are up-
dated iteratively through ND = 6 decoder layers. Besides, to
achieve the contrastive loss mentioned in our original paper,
one visual projection layer and one text projection layer are
needed to project visual and text features to the same feature
space with channel 64 for alignment. The projection layer
consists of three linear layers. The contrastive loss aims to
learn the similarity of visual-text multimodal features, con-
sisting of two losses: Lv

con ensures the features of an object
query are closer to positive text token features and farther
from other text tokens, and Lt

con ensures the features of a
target text token are closer to corresponding visual features
and farther from other visual tokens.
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Lcon = Lv
con + Lt

con, (3)

where o and t are the object and text features after pro-
jection layers, and o⊤t/τ is their similarity. k and l are the
number of objects and words. ti is the positive word feature
of the i-th candidate object.
Training Parameters. For all the experiments, we only
use the pre-trained ResNet50 and RoBERTa provided by
PyTorch while training other modules randomly initialized
from scratch following end-to-end manners. The network
is trained using AdamW [9] optimizer, with β1 = 0.9,
β2 = 0.999. For continuous/multi-view/monocular 3D de-
tection, we use 8 GPUs with 1/4/8 training samples on each
to train the model for 96/120/24 epochs, setting the learn-
ing rate to 0.0002/0.001/0.0002 and weight decay to 0.0001.
For all the occupancy experiments, we use 8 GPUs with 1
training sample on each to train the model for 24 epochs,
setting the learning rate to 0.0001 and weight decay to 0.01.
Data Augmentation. Since the transformation of 3D boxes
is easier than occupancy, we only conduct input data aug-
mentations for 3D detection experiments. For continuous
and multi-view 3D detection, we randomly flip and apply
global transformations to the aggregated points, including
random rotation with angles in [−0.0873, 0.0873], random

scaling with a ratio in [0.9, 1.1] and random translation fol-
lowing a normal distribution with standard deviation 0.1,
but do not apply any augmentation to images. The rotate
and flip augmentations are removed for the view-dependent
3D visual grounding experiments. For monocular experi-
ments, we use the same augmentation settings while also
flipping 2D images for better performance.

1.2. 3D Detection Baselines

By default, our following re-implemented baselines use the
same input setup (such as the number of input views) and
backbone with Embodied Perceptron for consistent per-
formance comparison, e.g., ResNet50 for ImVoxelNet and
FCOS3D, MinkResNet34 for FCAF3D, etc. All the base-
line implementation starts with a basic adaptation for ori-
ented 3D box prediction, a simple L1 loss on the Euler an-
gles’ cosine values, and can smoothly change the decoder
formulation to ours for performance improvement, as men-
tioned in the main paper. We basically provide several key
hyperparameters as follows and all the models are trained to
fully converge. The re-implementation of baselines is based
on their official release on top of MMDetection3D [5] and
more details can be referred to our code release.
ImVoxelNet. We adapt its officially released code to fit
our dataset and experiments. For multi-view 3D detec-
tion, we set the grid range to [−3.2m ∼ 3.2m,−3.2m ∼
3.2m,−0.78m ∼ 1.78m] along the X-Y (horizontal) plane
and Z (vertical) axis and adopt a random origin shift aug-
mentation following a normal distribution with standard de-
viation [0.7, 0.7, 0] along these axes as in the original pa-
per. We use 8 GPUs with 1 training sample on each to
train the model for 36 epochs, setting the learning rate to
0.0001 and weight decay to 0.0001. For monocular 3D de-
tection, we change the range to [−3.2m ∼ 3.2m,−1.0m ∼
1.56m, 0.8m ∼ 7.2m] along the XYZ axis where Y and Z
correspond to the height and depth axis. We use 8 GPUs
with 4 samples on each to train the model for 12 epochs,
setting the learning rate to 0.0002 and the weight decay to
0.0001. All the backbones would use a 0.1× smaller learn-
ing rate as in the original implementation.
VoteNet. We follow the official version for 3D detection on
ScanNet and only change the orientation estimation to the
trivial version mentioned above. We derive the mean 3D
size of boxes according to our annotations for the partial
bin-based box coder setup. We use 8 GPUs with 4/8 sam-
ples on each to train the model for 180/12 epochs for multi-
view/monocular 3D detection and adopt data augmentations
for point clouds including random flip, rotation, scaling, and
translations, similar to our baseline. It was observed that
the performance decreased a lot when changing the original
multi-bin orientation estimation to the trivial one. It is also
challenging for the original classification and localization
design for our large-vocabulary setting. Therefore, how to



design a more effective head for such point-based methods
is an important problem to be explored afterward.
ImVoteNet. Since adapting ImVoteNet for multi-view
cases is non-trivial, we only implement it for monocular ex-
periments for comparison. Following the official implemen-
tation, we first train a Faster R-CNN with the amodal 2D
boxes derived from projected 3D boxes in the first stage and
then tune the overall framework in the second stage. Re-
lated hyperparameters are set similar to VoteNet. We use 8
GPUs with 2/16 training samples on each to train the model
for 8/24 epochs at the first/second stage, setting the learning
rate to 0.02/0.001 and the weight decay to 0.0001/0.01 with
the SGD/AdamW optimizer.
FCAF3D. FCAF3D is similar to our depth-only baseline,
with differences in network designs such as multi-modality
fusion and decoders. Thus, the hyperparameters are also set
similarly to our baselines, including the input, optimizers,
training epochs, and data augmentations.
FCOS3D. FCOS3D is a conventional baseline for monocu-
lar 3D detection with simple architecture designs. We fol-
low the official implementation but change the backbone to
ResNet50 for consistency. We use 8 GPUs with 8 training
samples on each to train the model for 24 epochs, setting
the learning rate to 0.024 and the weight decay to 0.0001
with the SGD optimizer.

1.3. Occupancy Prediction Baselines

We follow the original implementation of OccNet [16] and
SurroundOcc [20] but change the BEV query according to
our settings to finally derive the 40 × 40 × 16 occupancy
in the range [−3.2m ∼ 3.2m,−3.2m ∼ 3.2m,−0.78m ∼
1.78m]. Besides, we take the RGB-D sequence input in
our setting as the multi-camera input in its original pa-
per (for autonomous driving). The learning rate is set to
0.0002/0.0001 and the weight decay is set to 0.01/0.01 for
the AdamW optimizer of OccNet and SurroundOcc. We
use 8 GPUs with 1 sample on each to train the model for
48 epochs. Following the official code, we also use a 0.1×
smaller learning rate for their backbone weights update.

1.4. Visual Grounding Baselines

ScanRefer. We implement ReferNet [3] based on our
adapted VoteNet and do not change other designs. We use
4 GPUs with 14 training samples on each to train the model
for 48 epochs. The learning rate is set to be 1e-3 and the
weight decay is set to 1e-5.
BUTD-DETR. We reimplement the BUTD-DETR in our
codebase and also change the orientation estimation to
achieve oriented 3D box prediction. Considering the large
vocabulary setting in our benchmark, we do not predict the
residual size of the 3D boxes based on their mean sizes cal-
culated according to the annotations. Instead, following the
original setting of BUTD-DETR, the essence of the visual

grounding task is not to predict the 3D box and its category,
but to predict the alignment score between one 3D box and
the input prompt. We directly predict the actual size of each
3D box. Besides, we keep the input of the box stream un-
changed as in its official implementation, i.e., a pre-trained
GroupFree3D detector is used to obtain 3D object box pro-
posals, which are sent into the box stream. We use 4 GPUs
with 24 training samples on each to train the model for 80
epochs. The learning rate of the backbone is set to be 1e-5,
the text encoder is frozen and the learning rate of the re-
maining parts is set to be 1e-4.
L3Det. L3Det is a cleaner architecture that is modified
based on BUTD-DETR, where the text and visual feature
fusion is conducted in the decoder. Similar to BUTD-
DETR, we change the orientation estimation to adapt to
the oriented 3D box prediction, and other components re-
main unchanged. We modify BUTD-DETR and reimple-
ment L3Det [23] as a cleaner architecture on top. The set-
tings for training and optimization are the same as those of
BUTD-DETR.

2. Dataset Details
2.1. Data Processing

Difference Among Source Datasets. In the main paper, we
mentioned that although the source datasets all have RGB-
D data, their data distributions have significant differences.
Specifically, ScanNet provides the raw RGB-D sequence
with the most frames (highest sampling frequency) and the
image resolution 1296×968. 3RScan uses a portrait screen
with image resolution 540 × 960 (but provides the image
with 90◦ rotation, resulting in 960 × 540) and has fewer
frames. Matterport3D directly provides general multi-view
images with image resolution 1280× 1024 instead of video
sequences to serve as the image modality of 90 building-
scale scenes. In the main paper, we have mentioned that
we unify the input as a general multi-view case and sample
ScanNet frames to make them consistent with the other two
datasets. In addition, we rescale the images to 480 × 480
to extract 2D features to unify the resolutions of inputs and
also force the 2D backbone to learn features robust to the
scale and rotations.

2.2. Annotation

Definition of Oriented 3D Boxes. As mentioned in the
main paper, we follow the typical definition of oriented 3D
boxes, including 3D center, 3D size, and three Euler an-
gles. This definition is naturally transferred from previous
research in 3D detection, from 7-DoF boxes in autonomous
driving to this 9-DoF version for any 3-DoF rotation. How-
ever, it still has some ambiguity in the definition of 3D sizes
and orientations. Because the definition of length, width,
and height is ambiguous, we define the 3D size as the length



along the XYZ axis, ∆x, ∆y, ∆z, to constitute the 3D size.
A potentially tricky problem is that we may have multiple
solutions with different combinations of this 3D size and
Euler angles for a specific oriented box. This is because
we do not pre-define the 3D size for each object to just
estimate the orientation, which is more similar to the set-
tings of 6D pose estimation. As a result, our 9-DoF defi-
nition is more suitable for the detection setting considering
that it should be more general for different objects from the
large-vocabulary categories, but at the same time essentially
can be reduced to a definition of boxes with eight vertices
and a single normal/unidirectional orientation. It may lose
other dimensions of orientation (compared to 6D pose) in-
formation, but in practice, such a unidirectional orientation
is enough for most objects, considering many of them are
symmetric. The discussion about such object representa-
tions and the corresponding evaluation metric design can be
important in future works.
Language Prompt Generation. When producing language
prompts, each prompt is designed to uniquely identify a tar-
get object within a 3D scan by establishing a distinct rela-
tionship between the target and an adjacent object, referred
to as the “anchor”. Following SR3D [1], we use the fol-
lowing compositional template to construct the language
prompt:

⟨target class⟩ ⟨spatial relation⟩ ⟨anchor class(es)⟩

We present the five types of spatial-relation language
prompts to make this appendix self-contained: Horizon-
tal Proximity, Vertical Proximity, Support, Allocentric, and
Between [1]:

• Horizontal Proximity: The type of language prompt
shows the distance in the horizontal direction between the
target and anchor objects, which indicates how close or
far the target is from the anchor in the scene.

• Vertical Proximity: This prompt indicates the vertical
relationship between the target and anchor.

• Between: This prompt indicates there exists a target be-
tween the two anchors. Furthermore, we can obtain a
more precise description, such as the target being in the
middle of two anchors.

• Allocentric: Based on our new EmbodiedScan annota-
tion, each object will contain precise orientation infor-
mation. Based on the position vector between the target
and anchor, as well as the orientation vector of the anchor
object itself, we can easily determine whether the target
is in front/back/left/right of the anchor.

• Support: This prompt indicates that the target is either
supported by or supporting the anchor.

We generate each type of language prompt scene by
scene. Before prompt generation, we need to separately fil-
ter out classes that are suitable as targets and anchors. In

addition, for each scene, we need to further determine the
valid class as the following:
• A class is a valid class for a target if: 1) There must be

multiple objects of this class in the current scene. 2) The
number of objects of this class in the current scene cannot
exceed 6.

• A class is a valid class for an anchor if: 1) Objects of this
class are unique in the current scene. 2) The number of
objects of class in the current scene cannot exceed 6.

• Besides, an anchor can never belong to the same class as
the target and, as such, its distractors.
Next, we elaborate on detailed rules for the generation of

different spatial relationships:
• Allocentric: For each anchor, we traverse all the valid

target classes. For all the objects of a certain target class,
we calculate the positional vector between the target and
anchor objects. Combined with the anchor’s own orien-
tation vector, we determine whether the target is in front
of, behind, to the left, or to the right of the anchor. Note
that an allocentric language prompt will only be gener-
ated when there is only one object belonging to a certain
target class in a certain direction of this anchor.

• Support and Vertical Proximity: For each anchor and
target object, we first calculate the Intersection over
Union (IoU) of the anchor and target in the XY plane.
If the IoU exceeds a certain threshold, we determine
whether the anchor and target can form a support relation-
ship based on a pre-defined list of supporter and supportee
categories. The positional relationship, above or below, is
judged based on the heights in the Z-axis direction.

• Horizontal Proximity: For each anchor, we traverse all
the valid target classes. For all the objects of a certain tar-
get class, we calculate their distances to the anchor object.
From these, we select the farthest and nearest objects to
construct a language prompt for each.

• Between: Unlike other types of prompts, this prompt re-
quires two anchors. We determine whether the target is
between two anchors based on their top view 2D bound-
ing boxes. Generally speaking, the target should be in the
same Z range for each of the two anchors and be away
from every other distractors by a certain distance.

2.3. Statistics

Complete Instance Statistics. We show the complete in-
stance distribution in Fig. 1 for reference. It can be observed
that it turns out a long-tailed distribution as expected and
shows obvious superiority over previous datasets regarding
the number of categories and instances.
Spatial Proximity Statistics. Here we first conduct a ba-
sic quantitative analysis of different categories of language
prompts. We find that in the generated prompts, descrip-
tions of Horizontal Proximity and Allocentric relationships
accounted for the vast majority, while Vertical Proximity



Figure 1. Complete instance distribution of EmbodiedScan.
Table 2. Spatial proximity statistics.

Horizontal Vertical Support Allocentric Between All
723477 16420 4812 216197 9135 970041

and Support only made up a small portion. This is consis-
tent with the fact that most objects in the 3D scene are pri-
marily distributed on the XY plane (horizontal direction).

In addition, we make further analysis of the prompt dis-

tribution and discover several reasonable statistic results:
1. For common objects such as tables, we find that in the
generated Support prompts, the ten most frequent objects
are book, lamp, jacket, paper, plant, bottle, plate, box, tele-
phone, and TV. By analyzing horizontal prompts, we find
that nearby objects often include window, door, couch, cab-
inet, curtain, bin, and chair. This is actually consistent with
our common sense, as tables are usually placed next to win-
dows and accompanied by chairs for people to sit.
2. For smaller objects like books, we find that in the gen-
erated prompts, Support prompts account for the majority.
Based on data analysis, books are usually placed on tables,
stands, desks, cabinets, boxes, and dressers.
3. In the generated prompts, there are certain categories of
objects usually appearing together within a scene. However,
these objects are not common in our daily in-house lives,
such as menu, cube, ridge, panel, sack, crate, and shovel.
4. We also discovered several common spatial relationships.
Some objects often appear in pairs. For example, mirrors
frequently appear above the sink, stool, cabinet, and socket
in the generated prompts. On the other hand, pictures are
often placed above the bed, couch, table, desk, toilet, and
cabinet.

These findings are small but interesting. We believe that
given such detailed instance annotations, further analyses
for the object distributions can reflect some common sense
regarding the daily object configurations. It would also pro-
vide useful guidance for AI-powered realistic 3D scene gen-
eration and design.

2.4. Data Examples

Oriented 3D Boxes. We show the comparison of previous
and current annotations in Fig. 2. Here, we highlight the dif-
ference in box orientations and new annotated small objects
in the provided two examples.
Complicated Language Prompts. Due to the fact that the
language descriptions generated in the new benchmark con-
tain more object categories, it is easier to generate prompts
with ambiguity. Although we tried our best to ensure that
the generated prompts have unique references through var-
ious restrictions during the generation procedure, this phe-
nomenon still exists in our later manual inspection. There-
fore, we randomly concatenate multiple generated language
prompts belonging to the same object to generate compli-
cated language prompts for auxiliary training. For example,
for one object with three generated language prompts: “find
the monitor that is closer to the door”, “the monitor that is
farthest from the windowsill” and “the monitor that is near
the fan”, we combine them to obtain the complicated lan-
guage prompt: “find the monitor that is closer to the door,
and it is farthest from the windowsill and near the fan.”



(a) Box orientations. (b) Small objects (new boxes marked in yellow).

Figure 2. Comparison of previous (top) and our annotations (bottom).

2.5. Clarifications

Dataset Comparison. First, we clarify several details in
Tab. 1 of the main paper. For a fair and clear comparison,
we modify some raw statistics of those datasets to make
them consistent with the criterion of our dataset. For exam-
ple, we do not show the number of objects for monocular
datasets such as SUN RGB-D and Hypersim because these
numbers can be inaccurate due to the potential repetitive
counting of objects across different frames. We normalize
the number of images from ScanNet by dividing its frame
numbers by 10 to keep its sampling frequency consistent
with ours. For categories, we only list the number of cat-
egories used for previous 3D detection instead of also in-
volving that for 3D instance segmentation to highlight the
much larger vocabulary of our 3D box annotations.

In addition, the number of language prompts shown in
the Table is from ScanRefer [3]. There are also other
annotations built upon ScanNet and we supplement these
works here. ReferIt3D [1] is another work concurrent to
ScanRefer but focuses on fine-grained 3D object identifi-
cation, providing 120k prompts including spatial reference
(SR3D) and natural reference (NR3D). ScanQA [2] targets
the question-answering problem in 3D scenes and offers
41k question-answering pairs for ScanNet. SQA3D [10]
further highlights the role of “situation” in this problem,
resulting in 21k descriptions of 6.8k unique situations and
35k questions. All these works are built upon only ScanNet
and thus have limited scene diversity. Recently, to collect
large-scale 3D-text pairs for pre-training, 3D-VisTA [24]
generates 278k scene descriptions from existing 3D Vision-
Language tasks, templates, and GPT-3 from ScanNet and
3R-Scan as ScanScribe. It also randomly replaces objects

from Objaverse with the same class to enhance the scene
and object diversity, but at the same time, may yield a lit-
tle domain gap between the generated and real-scanned raw
data. In contrast, thanks to our comprehensive annotations
for objects, regarding both categories and object poses, and
more diverse scans, our preliminary version has a much
larger scale in the language descriptions, scaling up the
number to about 1M. Furthermore, due to the complicated
scenes and object distributions, the task also becomes more
challenging. We will continue to improve the existing lan-
guage annotations and add more content from other aspects
for holistic 3D scene understanding.
Test Set. We respect the copyright and license of all the
source datasets and only include the test set statistics for
scans and images in the main paper. For the annotations
of the test set, we connect with the official hosts and will
consider making a more complete version for future bench-
marks and challenges. Other related issues will also be ad-
dressed by clear communication and collaboration with the
official hosts.

3. Supplementary Results
Due to the space limitation, we only list the main bench-
mark results and key ablation studies to demonstrate the
value of our dataset and the efficacy of our baseline. Here,
we further show more details about these results, supple-
ment more ablation studies, and visualize the predictions
qualitatively both on our dataset and in the real world.

3.1. Detailed Benchmark Results

3D Detection Results Per Category. First, we show the de-
tailed continuous and multi-view 3D detection performance



Table 3. Continuous and multi-view 3D detection results per category.
Methods mAP25 chair picture door pillow cabinet table book window box shelf plant bin curtain bottle lamp couch towel sink

Camera-Only 12.80 72.39 1.30 26.63 25.07 21.08 55.03 2.81 6.16 8.25 25.37 28.20 42.66 8.84 0.01 12.87 75.90 0.46 26.93
Depth-Only 17.16 80.68 6.88 29.77 40.89 22.25 67.83 1.28 31.61 10.02 45.93 29.90 28.52 6.01 2.55 31.85 70.14 45.08 67.16

Multi-Modality 19.07 80.73 15.59 35.45 51.46 25.22 62.14 4.56 24.82 10.45 45.98 48.32 30.07 14.60 2.02 34.62 78.12 40.72 65.68

ImVoxelNet [15] 6.15 69.76 0.41 10.79 15.38 14.43 45.63 1.77 4.82 5.50 13.36 12.96 29.96 9.79 0.01 15.44 54.51 1.94 22.76
VoteNet [12] 3.20 64.92 0.00 0.01 3.30 3.24 30.42 0.12 0.05 0.91 0.02 1.84 17.17 0.39 0.00 5.55 33.37 0.11 10.88
FCAF3D [14] 9.07 86.98 2.42 9.01 44.54 21.03 54.20 15.02 10.71 7.13 24.65 23.22 56.93 17.86 0.47 27.11 63.56 11.80 63.74
+our decoder 14.80 90.30 17.01 42.82 49.22 36.01 67.20 20.94 30.26 9.83 41.93 30.40 70.51 39.44 1.13 35.33 76.99 36.01 72.58

+painting 15.10 90.79 20.25 45.70 52.30 36.98 67.42 18.55 31.23 11.30 40.98 33.14 70.28 38.27 0.91 34.50 73.70 30.45 73.43
Ours 16.85 88.81 19.57 42.36 54.65 38.78 67.12 20.59 33.69 12.92 40.97 35.48 71.18 43.85 1.52 37.36 77.65 31.74 72.92

Table 4. Monocular 3D detection results per category.
Methods mAP25 chair pillow cabinet table lamp couch desk stand bed backpack

FCOS3D [19] 8.93 27.15 2.23 1.14 6.21 1.92 9.47 12.09 11.13 18.38 5.52
ImVoxelNet [15] 18.95 46.70 5.93 4.63 18.10 6.58 20.39 24.78 19.58 41.51 14.64

VoteNet [12] 14.30 54.00 1.65 2.41 19.53 3.55 21.80 19.13 4.89 45.58 4.21
ImVoteNet [13] 19.63 56.72 2.10 2.88 29.00 10.01 27.77 23.13 12.68 56.94 10.93
FCAF3D [14] 25.70 65.91 23.19 6.47 26.64 17.87 22.50 31.64 25.03 53.68 28.24
+our decoder 28.16 63.85 28.68 6.62 32.34 14.19 31.61 30.81 27.27 60.03 32.43

+painting 30.19 66.39 28.28 7.41 33.66 18.23 32.24 35.64 29.69 60.04 37.92
Ours 34.28 69.47 31.64 10.01 37.29 19.73 31.67 39.07 32.01 63.27 37.89

Methods mAP25 bathtub ottoman dresser bin toilet refri. stove microwave monitor computer
FCOS3D [19] 8.93 6.31 1.38 4.54 10.23 40.51 6.92 4.03 5.60 3.25 0.57

ImVoxelNet [15] 18.95 10.14 9.63 9.98 17.82 65.70 18.11 15.92 14.93 8.26 5.80
VoteNet [12] 14.30 13.49 7.60 0.53 14.72 68.16 0.96 1.35 0.16 1.26 1.08

ImVoteNet [13] 19.63 37.56 9.14 1.87 21.96 74.08 1.21 9.50 2.12 2.24 0.66
FCAF3D [14] 25.70 26.38 15.76 4.35 34.93 71.90 13.88 4.29 9.95 21.57 9.79
+our decoder 28.16 38.17 21.85 7.28 38.96 75.57 16.25 7.78 10.31 6.13 13.04

+painting 30.19 41.31 20.23 7.16 42.86 77.59 16.12 9.56 10.76 14.04 14.68
Ours 34.28 50.63 25.59 9.54 45.17 80.39 24.44 14.53 19.96 19.77 23.65

in Tab. 3 for categories that are common in the real world
and annotations. We can see that although these categories
have a large number of annotations, there are still some that
seem challenging for current models, such as pictures and
bottles. In addition, it can be observed that the improve-
ment brought by a better decoder for orientation estimation
(+our decoder) is mainly focused on those objects that have
significant differences between length and width, such as
pictures, doors, windows, shelves, towels, etc. It is a rea-
sonable phenomenon and reveals the importance of orien-
tation estimation in this setting. Finally, because we do not
list the 20 categories in the monocular 3D detection bench-
mark, we show the complete results in Tab. 4.
Summarized Key Takeaways. We mainly discuss our
dataset’s value and provide detailed benchmark results with
respective discussions for each benchmark in the main pa-
per. Here, we summarize other common key takeaways of
those results as follows:
1. RGB-D outperforms RGB/depth-only as expected and
the role of RGB is more crucial in occupancy prediction.
2. Our settings pose new challenges, particularly in the
large vocabulary and orientation estimation for conven-
tional tasks, leading to some occasional results such as
VoteNet can perform a little worse than ImVoxelNet.
3. Monocular cases are notably difficult without stereo cues
and with truncated object views. Grounding is more chal-
lenging due to complex prompts that avoid ambiguity.

Table 5. We implement more methods on multi-view 3D detection
given the similarity to their papers’ settings. Monocular experi-
ments and other methods need to adapt more operations tailored
to 9-DoF boxes and will be added afterward, e.g., 3DETR needs
a 9-DoF GIoU loss and more innovations to handle large vocabu-
lary well similar to 2D DETR methods. We implement a simpli-
fied/approximated version, achieving 62.87% AP on “bed” but still
very low performance on most categories. (∼1% mAP overall).

Method mAP25 mAR25 Head25 Common25 Tail25
H3DNet [22] 3.72 6.23 7.55 1.97 1.07

NeRF-Det [21] 7.90 22.91 13.12 5.74 3.35
Ours 16.85 51.07 28.65 12.83 7.09

3.2. Supplementary Main Results and Discussions

More Recent Baselines. The main paper mainly imple-
ments classical baselines from different streams (image/
point/voxel-based) for each benchmark. We include more
recent ones in Tab. 5. For language-grounded benchmarks,
given the difficulty of zero-shot methods handling our set-
tings, we do not compare with them for a fair comparison.
Given OpenScene’s [11] inability to distinguish instances,
here we adapt OpenMask3D [17] on our benchmark by re-
placing instance masks with our 9-DoF box proposals, re-
sulting in 6.64% vs. our 25.72% AP25.
Compared with zero-shot methods using CLIP. It is a
natural idea to incorporate CLIP in our framework as other
zero-shot multi-modal 3D perception methods. We are also
considering it to enhance multi-modal features. However, it



(a) Continuous 3D detection with different num-
bers of inference views.

(b) Multi-view 3D detection with different num-
bers of inference views.

(c) Multi-view 3D detection with different num-
bers of training views.

Figure 3. Performance changed with the number of training and inference views.

Table 6. Ablation studies for dense fusion.
Methods Input mIOU empty floor wall chair cabinet door table couch shelf window bed curtain refri. plant stairs toilet
Painting RGB-D 20.33 77.45 70.49 57.58 55.11 31.51 22.29 55.61 47.75 40.27 28.16 50.32 41.52 19.14 19.66 13.64 45.43

MinkUNet RGB-D 24.53 71.10 63.41 56.19 49.99 35.05 37.16 50.96 46.87 38.30 33.56 54.97 41.49 30.20 35.89 12.77 64.56
MinkResNet (w/o FPN) RGB-D 21.16 77.45 70.81 57.09 55.44 30.99 23.49 55.31 49.64 40.59 30.65 48.58 38.96 19.10 22.37 6.77 58.57

MinkResNet (Ours) RGB-D 27.65 77.57 71.04 62.12 57.30 38.31 41.09 56.79 50.72 46.06 38.75 56.24 46.38 29.47 40.52 17.44 68.95

Table 7. More experiments with real and rendered images.
Train Val mAP25 Head25 Common25 Tail25

Render Render 22.11 33.01 16.44 6.74
Render Real 18.72 27.02 14.85 6.25

Real Real 21.98 32.91 17.18 5.05
Real Render 22.13 32.34 17.81 6.00

Real+Render Real 22.26 33.48 16.99 5.46
Real+Render Render 22.87 34.56 17.29 5.51

can only enable limited simple tasks like open-vocabulary
semantic segmentation. For more difficult scenarios like
3D geometric understanding and grounding across differ-
ent views in our benchmark, additional data is needed. Our
dataset, along with feature fusion and decoders, becomes
crucial for fine-tuning such pre-trained models with 3D
backbones.
More Experiments of Using Real/Rendered Data. It’s
nice to see our model trained with real captures also gen-
eralizes well to rendered views (Tab. 7). Combining these
two data sources further brings limited improvement.

3.3. Supplementary Ablation Studies

Number of Views. As mentioned in the main paper, our
trained baseline is applicable to any number of views dur-
ing training and inference. Here, we show the ablation study
regarding the number of views used for training and infer-
ence in Fig. 3. Specifically, taking 3D detection as the ex-
ample, we change the inference views for continuous and
multi-view settings and record the performance change in
Fig. 3a and 3b. We can see that it has a relatively minor in-
fluence on the continuous setting because the ground truth
also changes as the visible instances become fewer when
reducing the number of inference views. For multi-view
experiments, it affects the performance only when the num-
ber of views is too small (e.g., < 20), but it is more ro-

bust than the simple painting baseline, potentially benefiting
from the stronger multi-modality fusion. Finally, similar to
inference, it is also better to use more views for training but
would saturate when using more than 20 views (Fig. 3c).
Therefore, setting the number of training views to 20 is a
good trade-off between training costs and performance.

Dense Fusion. Here, we provide more comparison results
with other RGB-D baselines for dense occupancy predic-
tion. Taking the multi-view occupancy prediction as an ex-
ample, we re-implement the painting baseline as the detec-
tion experiments and observe a much lower performance,
as shown in Tab. 6. We conjecture it is because the painting
loses much more dense information with such sparse feature
extraction, resulting in such a larger gap from our dense fu-
sion method. As for the alternative choices for dense fusion,
we first attempt to voxelize the space with 0.16m voxels and
use a MinkUNet to produce the sparse voxel feature for sub-
sequent fusion and dense prediction. It turns out that fine-
grained partition is necessary at the beginning. Besides, if
removing the FPN to make the 2D feature extraction more
lightweight, we cannot obtain the final competitive perfor-
mance either.

Sparse Fusion. However, the FPN is not necessary for
sparse fusion, especially considering the optimization prob-
lem encountered in the 3D detection baseline. Furthermore,
except for the unstable training problem mentioned in the
main paper, our baseline is also much more computation-
ally efficient than the alternative implementations, which
keep the FPN or paint the points with image features. Our
final baseline costs only ∼25G of memory with the reduc-
tion of 2D feature channels and removing the FPN, com-
pared to ∼59G of memory used in other approaches. Fi-



Table 8. Ablation studies for sparse fusion designs. xyz+2D feat
paints input points with sampled 2D features, and 3D+2D feat uses
multi-level voxels but only the last 2D feature layer for sampling.

Method mAP25 Head25 Common25 Tail25
xyz+rgb (painting) 20.78 30.69 15.41 7.15

xyz+2D feat 20.73 31.38 15.35 5.41
3D+2D feat 21.06 32.09 15.10 5.84

ML-3D+2D feat (ours) 21.70 31.77 16.89 6.77

Table 9. Ablation studies of designs for sparse decoder.

Method mAP25 mAP50 Head25 Common25 Tail25
w/o Decouple 20.14 11.89 30.71 14.06 6.16

Decouple (sum.) 18.03 9.98 27.16 12.85 5.86
Decouple (avg.) 21.50 11.30 32.13 17.62 3.71

+Norm by 3D Size 20.67 11.39 30.68 16.20 5.28
Decouple (weigh.) 21.70 12.53 31.77 16.89 6.77
7-DoF IoU Loss 21.51 14.43 32.21 16.03 6.22
+ Corner Loss 22.13 13.95 32.60 16.82 7.08

nally, we provide the ablation study for alternative sparse
fusion methods in Tab. 8. Our method, adopting multi-level
feature fusion, empirically outperforms others, thanks to
consistent inherent 2D/3D feature space and gradient back-
propagation.
Sparse Decoder. The basic comparison between the sim-
ple L1 loss for Euler angles and our final decoder has been
shown in the main paper. Here, we elaborate more on the
ablation results of several design details in Tab. 9. We first
compare the results of different combination methods for
the corner losses and see that the weighted disentangled loss
shows the best performance, compared to “w/o decouple”,
“simple summation”, and “average”. In addition, taking the
size of boxes into consideration and normalizing the corner
losses by their sizes cannot bring improvement in the final
performance.

Apart from the corner loss, another straightforward ap-
proach is to implement a pseudo-3D-IoU loss for these
methods. Specifically, since the computation of 3D IoU
among 9-DoF boxes is still heavy and non-differentiable,
we approximate the 3D boxes as 7-DoF ones with only
the yaw part in the axis-aligned coordinate system. This
“hack” method shows outstanding performance, especially
in mAP50, and can be further enhanced by combining the
corner loss. Therefore, IoU-based loss is a design more
faithful to the final metric and worthy of further study for
the general 9-DoF case.
Performance with Different Training Data. During the
procedure of scaling up data and annotations, we also test
the model’s performance on ScanNet and our final vali-
dation set. We can find a performance improvement that
seems to be linear with respect to the number of scans (1.5k-
3k-5k scans from ScanNet to EmbodiedScan), especially
for objects with plenty of annotations (“Head” categories).
We would continue collecting the RGB-D scan data and
annotations to further push the model’s performance to a
higher level, towards the usage in practice and real-world
embodied AI.

Table 10. Performance with different training data.

Train Val Overall Head Common Tail
ScanNet ScanNet 20.28 29.81 15.57 6.40
+3RScan ScanNet 21.41 31.61 17.07 5.35

+Matterport3D ScanNet 23.02 33.82 18.09 6.57
ScanNet EmbodiedScan 10.92 21.10 8.06 1.78
+3RScan EmbodiedScan 13.91 25.25 10.69 3.76

+Matterport3D EmbodiedScan 16.85 28.65 12.83 7.09

3.4. Qualitative Results

We visualize the prediction results on EmbodiedScan in
Fig. 4. From top to bottom, we plot the predictions of con-
tinuous 3D detection and occupancy prediction, monocular
3D detection, and multi-view 3D visual grounding. From
this visualization, we can have a feeling about different per-
ception output formats and how our models perform on our
dataset. We can observe that the continuous perception can
keep most previous predictions and fix some of them with
the exploration. In addition, the localization of 3D visual
grounding can be more accurate than the classical 3D detec-
tion for the target object considering it only needs to predict
a single bounding box.

3.5. In-the-Wild Test Demo

Finally, we test our trained model in the wild. Specifically,
we use Azure Kinect DK to record the RGB-D streams with
camera poses and feed them into our models. We only
modify the IoU/score thresholds to 0.15/0.075 and visual-
ize ≤10 objects per category to avoid redundant boxes. It
shows decent performance in our three test cases without
cherry-picking, even with a different RGB-D sensor in dif-
ferent environments potentially having significant domain
gaps from the training data. We visualize the prediction re-
sults in the attached supplementary video.

4. Supplementary Video
To provide a summary of our paper and key contributions,
we make a short supplementary video, starting from the
in-the-wild test demo to the underlying dataset, annotation
tools, and methodology, and attach it to the supplementary
materials.

References
[1] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed

Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners
for fine-grained 3d object identification in real-world scenes.
In European conference on computer vision, 2020. 4, 6

[2] Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki
Kawanabe. Scanqa: 3d question answering for spatial scene
understanding. In proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022. 6

[3] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner.
Scanrefer: 3d object localization in rgb-d scans using natural
language. In European conference on computer vision, 2020.
3, 6



Figure 4. Qualitative results of different tasks on EmbodiedScan.

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 1

[5] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/

mmdetection3d, 2020. 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.
1

[7] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d


moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 1

[8] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.
Group-free 3d object detection via transformers. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2021. 2

[9] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[10] Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yi-
tao Liang, Song-Chun Zhu, and Siyuan Huang. Sqa3d:
Situated question answering in 3d scenes. arXiv preprint
arXiv:2210.07474, 2022. 6

[11] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea
Tagliasacchi, Marc Pollefeys, Thomas Funkhouser, et al.
Openscene: 3d scene understanding with open vocabularies.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023. 7

[12] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019. 7

[13] Charles R Qi, Xinlei Chen, Or Litany, and Leonidas J
Guibas. Imvotenet: Boosting 3d object detection in point
clouds with image votes. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2020. 7

[14] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Fcaf3d: Fully convolutional anchor-free 3d object detection.
In European Conference on Computer Vision, 2022. 1, 7

[15] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In WACV,
pages 2397–2406, 2022. 1, 7

[16] Chonghao Sima, Wenwen Tong, Tai Wang, Li Chen, Silei
Wu, Hanming Deng, Yi Gu, Lewei Lu, Ping Luo, Dahua
Lin, and Hongyang Li. Scene as occupancy. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2023. 3

[17] Ayça Takmaz, Elisabetta Fedele, Robert W Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann. Open-
mask3d: Open-vocabulary 3d instance segmentation. arXiv
preprint arXiv:2306.13631, 2023. 7

[18] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019.
1

[19] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
FCOS3D: Fully convolutional one-stage monocular 3d ob-
ject detection. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) Workshops,
2021. 1, 7

[20] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Jie
Zhou, and Jiwen Lu. Surroundocc: Multi-camera 3d occu-
pancy prediction for autonomous driving. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2023. 2, 3

[21] Chenfeng Xu, Bichen Wu, Ji Hou, Sam Tsai, Ruilong Li,
Jialiang Wang, Wei Zhan, Zijian He, Peter Vajda, Kurt
Keutzer, et al. Nerf-det: Learning geometry-aware volu-
metric representation for multi-view 3d object detection. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 23320–23330, 2023. 7

[22] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XII 16, pages 311–329. Springer, 2020. 7

[23] Chenming Zhu, Wenwei Zhang, Tai Wang, Xihui Liu, and
Kai Chen. Object2scene: Putting objects in context for open-
vocabulary 3d detection. arXiv preprint arXiv:2309.09456,
2023. 3

[24] Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan
Huang, and Qing Li. 3d-vista: Pre-trained transformer for 3d
vision and text alignment. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023. 6


	. Implementation Details
	. Embodied Perceptron
	. 3D Detection Baselines
	. Occupancy Prediction Baselines
	. Visual Grounding Baselines

	. Dataset Details
	. Data Processing
	. Annotation
	. Statistics
	. Data Examples
	. Clarifications

	. Supplementary Results
	. Detailed Benchmark Results
	. Supplementary Main Results and Discussions
	. Supplementary Ablation Studies
	. Qualitative Results
	. In-the-Wild Test Demo

	. Supplementary Video

