
Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model

Supplementary Material

(a) Filtered samples 

(b) Preserved samples 

Figure 8. Examples of (a) filtered samples with the lowest 10%
confidence scores and (b) preserved samples in the CUB dataset.

7. Appendix
This appendix is organized as follows:

• In Sec. 7.1, we elaborate on the details of data cleaning
design for Diff-Mix.

• In Sec. 7.2, additional visualizations are presented, in-
cluding the visualization of attention maps and failure ex-
amples of complex datasets.

• In Sec. 7.3, few-shot classification results on a general
dataset Pascal is provided [14].

• In Sec. 7.4 and Sec. 7.5, implementation details and la-
tency considerations are presented, respectively.

7.1. Data-Cleaning Strategy
Due to the inherent differences in contour and size between
the two classes, there is a higher risk of producing less real-
istic images during inter-class editing. We employ a simple
data cleaning strategy that utilizes CLIP [43]4 as the filter-
ing criterion. Specifically, we construct a positive caption,
”a photo with a [metaclass] on it”, and a negative caption,
”a photo without a [metaclass] on it”, and evaluate the syn-
thetic data’s confidence score towards the positive caption.
We filter out the 10% of samples with the lowest confidence
scores (we do not synthesize an additional 10% samples af-
ter data cleaning), and a subset of the filtered samples is
displayed in Fig. 8. The preserved samples constitute the

4https://huggingface.co/openai/clip-vit-base-patch32

synthetic dataset that participates in the training process of
downstream classification tasks.

7.2. Visualizations
Visualizations of attention maps. In Section 3.4, we
have shown that Diff-Mix can perform foreground editing
while preserving most of the layout of the reference im-
age. To support the claim, we provide evidence that SD
can offer weak segmentation through textual conditions and
achieve realistic foreground editing. We present visualiza-
tions of attention maps in Figure 9 for different datasets.
The identifier, class descriptor (e.g., “bird”, “car”) and
the “<eot>” token, which contains the global semantic in-
formation, tend to attend to the foreground part in the refer-
ence image. For example, the mentioned tokens primarily
emphasize the bird rather than the tree branches (refer to
Row 1 in the figure). This suggests that textual guidance,
can offer a robust foreground prior, aiding in effective fore-
ground editing at intermediate strengths. We posit that this
characteristic ensures the generation of challenging samples
where the foreground is replaced by the target concept when
employing Diff-Mix for inter-class editing.

Visualizations on more datasets. In Fig. 12, we illus-
trate the editing process of Diff-Mix with varying strength
s 2 {0.1, 0.3, 0.5, 0.7, 0.9, 1.0} across five datasets. It is
worth noting that for strength s = 1, the translated im-
ages still exhibit a certain degree of similarity to the ref-
erence images. This phenomenon may be attributed to the
last time-step not guaranteeing a zero signal-to-noise ratio,
preserving the style and layout of the reference images [31].
Particularly, when the foreground is distinct against a sim-
ple background, Diff-Mix tends to generate high-quality in-
terpolated images. We also observe that for more complex
datasets, such as Stanford Dogs, where the foreground is
less clear, and there are multiple concepts in a single im-
age, unrealistic images tend to be generated, as seen in
Fig. 13 (a) and (b). For general dataset Pascal [14], the
dramatic differences in contour and size between two dis-
tinct classes lead to the generation of more unrealistic im-
ages (e.g., “bus” �! “cat”), especially at intermediate
strengths (e.g., 0.7), as seen in Fig 13 (c) and (d).

Real-Gen versus Diff-Gen. To illustrate the distribution
gap between domain-specific datasets and the pre-trained
T2I model, as well as to demonstrate how fine-tuning can
significantly mitigate this gap, we present a comparison
in Fig. 14. It is worth noting that Real-Gen sometimes
fails to generate correct concepts based on the terminol-
ogy name of the target class (see “photo of a chuck

https://huggingface.co/openai/clip-vit-base-patch32


<sot> a photo of a [Vtar] bird <eot> <pad> <pad>

<sot> a photo of a [Vtar] car <eot> <pad> <pad>

<sot> a photo of a [Vtar] aircraft <eot> <pad> <pad>

<sot> a photo of a [Vtar] dog <eot> <pad> <pad>

<sot> a photo of a [Vtar] flower <eot> <pad> <pad>Reference image

Figure 9. Visualizations of attention maps are shown in different rows for various datasets: CUB (Row 1) [61], Stanford Cars (Row 2)
[27], FGVC Aircraft (Row 3) [34], Stanford Dogs (Row 4) [26], and Oxford Flowers (Row 5) [38]. These attention maps were generated
during inter-class editing using Diff-Mix.

will widow” in panel (a)). Diff-Gen tends to generate
more faithful outputs, it is noted that the majority of the
generated images exhibit a similar layout and closely re-
semble the training samples. This resemblance is especially
pronounced for those training samples characterized by a
prominent foreground and a simple background.

Real-Mix versus Diff-Mix. In Fig. 15, we compare the
generated samples between Real-Mix and Diff-Mix. We
observe that, by conditioning on the reference image, Real-
Mix accurately captures the semantic meaning of the termi-
nology name (see “chuck will widow” in panel (a)).
This feature of Real-Mix is consistent with its superior per-
formance in few-shot classification, as depicted in Fig. 6.
Additionally, we observe that Diff-Mix achieves more pre-
cise foreground editing (refer to Fig. 15 (c) and (d)). This
enhanced accuracy can be attributed to the class descriptor
maintaining its focus on the semantic content without being
diverted to other extraneous information.

7.3. Experiments
Few-shot classification in Pascal.

In Sec. 7.2, We have demonstrated that inter-class edit-
ing for general datasets tends to produce unrealistic im-

(a) 5-shot (b) all-shot

Figure 10. 5-shot and all-shot classification results in Pascal.

ages due to the visual gaps between two classes. Here, we
present 5-shot and all-shot classification results in Figure
10 for different expansion strategies on the general dataset
Pascal [14]. Originally, Pascal is an object class recognition
dataset containing 11,530 images and 6,929 object segmen-
tation masks. We construct it into a classification dataset,
following the setting of Da-fusion [58], resulting in a train-
ing split of 1,464 and a validation split of 1,449 for 20 gen-
eral classes (e.g., cat and boat). The main observation is
that inter-class augmentation tends to be less effective for
this general dataset, especially as the shot number increases
(compare X-Aug and X-Mix in the figure). The effective-



hyperparameter DB TI TI+DB

Base Model Stable Diffusion-v1.5 Stable Diffusion-v1.5 Stable Diffusion-v1.5
Optimized U-Net(LORA) [Vi] U-Net(LORA) + [Vi]
Optimization Steps 35000 35000 35000
Batchsize 8 8 8
Input Resolution 512⇥ 512 512⇥ 512 512⇥ 512
Learning Rate 5e-5 5e-5 5e-5
Placeholder Token - [Vi] [Vi]
LORA Rank 10 - 10

# if inference steps (T ) 25 25 25
Guidance Scale 7.5 7.5 7.5
Noise Scheduler DPMsolver++[33] DPMsolver++[33] DPMsolver++[33]

Table 7. Hyperparameters. This tables summarizes the hyperparameter settings of different fine-tuning strategies.

Dataset # of classes # of training # of val. Source

CUB 200 5994 5794 Huggingface.co
FGVC Aircraft 100 3334 3333 Huggingface.co
Oxford Flowers 102 4070 4119 Huggingface.co
Stanford Dogs 120 12000 8580 vision.stanford.edu
Stanford Cars 196 8144 8041 Huggingface.co

Table 8. Statistics of datasets.

ness of fine-tuning also decreases, with Real-Gen consis-
tently outperforming Diff-Gen. This suggests that the pre-
trained SD is capable of generating sufficiently diverse and
faithful samples for these coarse concepts. Diff-Mix ex-
cels in handling domain-specific scenarios, where smaller
differences in contour and layout between two classes are
presented.

7.4. Implementation Details.
Diff-Mix. Diff-Mix comprises two stages: the fine-tuning
stage and the sampling stage. The implementation details
of Diff-Mix for three different fine-tuning strategies are de-
picted in Table 7. Note that our fine-tuning strategy heavily
relies on the diffuser [60] repository. For DB and TI+DB,
we only fine-tune the residual LORA matrices in atten-
tion modules in the U-Net. Please note that in the original
Dreambooth [46] paper, an unlearnable identifier was intro-
duced to represent user-specific concepts in concept learn-
ing. However, in our implementation, we have opted not to
use the identifier and have implemented it as a straightfor-
ward fine-tuning of text-to-image models. All fine-tuning
and sampling processes are conduct on 4 RTX3090 GPUs.

Datasets. We list the statistics of the datasets involved in
our experiments in Table 8.

Conventional classification. The hyperparameter settings
for the CUB dataset are presented in Table 9. To repro-
duce Real-filtering (RF) [19], a subset is derived from Real-
Gen through data cleaning, as detailed in Section 7.1. Real-
guidance (RG) [19] augments the dataset with low-strength
intra-class editing, akin to Real-Aug with a strength param-

hyperparameters ResNet50 ViT-B/16

Source torchvision torchvision
# of parameters 25.5M 86.6M
Pre-trained ImageNet1K ImageNet21K
Fine-tuned - ImageNet1K
Input Resolution 448⇥ 448 384⇥ 384
Batchsize 64 32
Epochs 128 100
Optimizer SGD SGD
Learning Rate 0.02 0.001
Momentum 0.9 0.9
Weight Decay 5e-5 5e-5
Label Smoothing 0.9 0.9

Table 9. hyperparameters. This table summarizes the hyperparam-
eter settings for CUB using two visual backbones in our conven-
tional classification task.

eter s = 0.1. For the replication of Da-fusion [58], we
fine-tune the synthetic data (SD) using our TI strategy over
35,000 steps, with translation strengths randomly selected
from the set 0.25, 0.5, 0.75, 1.0. For CutMix and Mixup,
the weight decay is 1 ⇥ 10�5, and the mixup ratios are set
to 0.1 and 0.3, respectively.

Few-shot classification. The few-shot classification is con-
ducted on CUB with varying shot numbers: 1, 5, 10, and all.
The comparison methods encompass: (1) inter-class aug-
mentation strategies, namely Diff-Mix and Real-Mix, (2)
intra-class augmentation strategies, namely Diff-Aug and
Real-Aug, and (3) distillation-based methods, Diff-Gen and
Real-Gen. The backbone model used is ResNet50 with an
input resolution of 2242. We employ the same hyperparam-
eters as in the conventional setting, as detailed in Table 9,
albeit with a larger batch size (256) and a higher learning
rate (0.05). All experiments are conducted with three trials,
and the average results are reported.

Long-tail classification. Thanks to the authors of CMO
[39], the reproduced long-tail results are built upon its open-

https://huggingface.co/datasets/Multimodal-Fatima/CUB_train
https://huggingface.co/datasets/Multimodal-Fatima/FGVC_Aircraft_train
https://huggingface.co/datasets/huggan/flowers-102-categories
http://vision.stanford.edu/aditya86/ImageNetDogs/
https://huggingface.co/datasets/Multimodal-Fatima/StanfordCars_train
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py


Dataset # of classes # of training Imbalance Factor (IF)
CUB-LT 200 {1242, 1798, 2238} {100,50,10}
Flower-LT 102 {847, 1238, 1532} {100,50,10}

Table 10. Statistics of long-tail datasets CUB-LT and Flower-LT.

source git repository 5. To construct the imbalanced dataset,
an imbalance factor is introduced to control the imbalance
level. The imbalance factor ⇢ is defined as ⇢ = maxk{nk}

mink{nk} ,
where nk is the number of samples in the k-th class. Specif-
ically, given a normal dataset, we first sort the classes based
on the number of images within classes in descending or-
der, and use k0 to denote the sorted class index. A subset of
images is randomly sampled from each class to achieve the
desired imbalance, ensuring that the number of images for
each class corresponds to the calculated target. The number
of sampled images is determined by,

nk0 = max
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where n̄ is the averaged number of images for each class,
and N is the total number of classes. The statistics of con-
structed CUB-LT and Flower-LT datasets can be found in
Table 10. To uniformize the distribution of imbalanced real
data, we first fix the number of iterative samples within each
epoch and replace real samples with synthetic data with
a 50% probability. Note that the synthetic data conforms
to the distribution specified by Eq. 4 with reversed class
indices, thereby generating more synthetic images for tail
classes. We maintain a constant number of training epochs
and learning rate for both synthesis-free and synthesis-
based approaches to ensure a fair comparison. We further
present accuracy results for three distinct subsets when IF
is 100: Many-shot classes (classes with over 20/30 train-
ing samples for CUB-LT/Flower-LT), medium-shot classes
(classes with 5-20/10-30 samples for CUB-LT and Flower-
LT), and few-shot classes (classes with fewer than 5/10 sam-
ples for CUB-LT/Flower-LT).

7.5. Latency
Compared to non-generative augmentation methods, Diff-
Mix’s implementation incurs additional computational
overhead during fine-tuning and data sampling. For in-
stance, when working with the CUB dataset, which con-
tains approximately 6,000 training samples, the fine-tuning
process is completed in about 3 hours. This duration is
achieved using an input resolution of 512 ⇥ 512 on 4
NVIDIA RTX 3090 GPUs with a total batch size of 8.
During sampling, synthetic samples are generated at the
same resolution with a total of T = 25 reverse steps. The
throughput across various translation strengths is evaluated

5https://github.com/naver-ai/cmo

Figure 11. Sampling throughput across various translation strengths
in a single RTX 3090 GPU.

Method Translation strength s Images per GPU-hour

Real-filtering 2{1.0} 2,957
Real-guidance 2{0.1} 20,502
Da-fusion 2{0.25,0.5,0.75,1.0} 4,952
Diff-Mix 2{0.5,0.7,0.9} 4,179

Table 11. Comparison of sampling throughput of different expansion
strategies.

in Fig. 11, and a throughput comparison with other syn-
thesis strategies is provided in Table 11. While Diff-Mix is
more efficient than generating data from scratch, it is less so
than low-strength editing (e.g., Real-guidance). For gener-
ating synthetic data for the CUB dataset with a 5x multiplier
(resulting in approximately 30,000 images), the process re-
quires roughly 2.5 hours using 4 NVIDIA RTX 3090 GPUs.

8. Limitations
Our inter-class augmentation method shows less effective
when applied to general datasets that encompass a broad
spectrum of concepts. We are optimistic, however, that inte-
grating an image inpainting strategy or confining Diff-Mix
to operate among adjacent classes could address this lim-
itation. Moreover, the current annotation strategy is deter-
mined empirically and lacks a robust theoretical foundation,
which may limit the generalizability of the strategy.

https://github.com/naver-ai/cmo


0.1 0.3 0.5 0.7 0.9 1.0 Target class
Diff-Mix

Figure 12. Examples of image generated using Diff-Mix with varying translation strengths in CUB (Row 1), Stanford Cars (Row
2), FGVC Aircraft (Row 3), Stanford Dogs (Row 4) , Oxford Flowers (Row 5).

0.1 0.3 0.5 0.7 0.9 1.0

(a) “Maltese dog ” -> “Irish wolfhound ”  

(b) “Saluki ” -> “bloodhound ”  

(c) “boat ” -> “car ”  

(d) “bus ” -> “cat ”  

    Target class
Diff-Mix

Figure 13. Failure examples generated using Diff-Mix with varying translation strengths are shown in panels (a) and (b) for the complex
dataset Stanford Dogs, and in panels (c) and (d) for the general dataset Pascal [14].



(a) “photo of a chuck will widow ” 

Real-Gen (pre-trained)     Diff-Gen (fine-tuned)      
     

(b) “photo of a Pied billed Grebe ” 

(c) “photo of a Challenger 600 ” 

(d) “photo of a A330-200 ” 

Target class

Figure 14. Examples of image generated using Real-Gen and Diff-Gen. The prompts are formatted as “photo of a [terminology
name]” for Real-Gen and “photo of a [Vi] [metaclass]” for Diff-Gen. Panels (a) and (b) depict the samples of CUB dataset,
while panels (c) and (d) depict the samples of FGVC Aircraft dataset.

       Real-Mix (pre-trained)              Diff-Mix (fine-tuned)                  

(a) “Bronzed Cowbird ” -> “chuck will widow ”  

(b) “Bronzed Cowbird ” -> “Pied billed Grebe ”  

(c) “acura tl type-s 2008 ” -> “bmw activehybrid 5 sedan 2012 ”  

(d) “acura tl type-s 2008 ” -> “chevrolet tahoe hybrid suv 2012 ”  

0.1 0.3 0.5 0.7 0.9 1.0 0.1 0.3 0.5 0.7 0.9 1.0 Target class

Figure 15. Examples of image generated using Real-Mix and Diff-Mix with varying translation strengths. The prompts are formatted as
“photo of a [terminology name]” for Real-Mix and “photo of a [Vi] [metaclass]” for Diff-Mix. Panels (a) and (b)
depict the samples of CUB dataset, while panels (c) and (d) depict the samples of Stanford Car dataset.
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