
Epistemic Uncertainty Quantification For Pre-trained Neural Networks

Supplementary Material

A. Proofs of Propositions
In this section, we will provide the proofs for all the propo-
sitions shown in Section 3.

A.1. Proof of Proposition 3.1
Proof. This proof is based on the Bernstein-von Mises the-
orem [10, 15]. Under mild regularity conditions, such as
continuity of the likelihood function of ✓ and the maximum
likelihood estimate ✓

⇤ not being on the parameter space
boundary, the posterior distribution of ✓ converges in distri-
bution to a multivariate Gaussian distribution as the sample
size |D| ! 1. Specifically, we have:

sup
✓

|p(✓|D)�N (✓; ✓⇤, |D|
�1

I(✓⇤)�1))| ! 0

where ✓
⇤ = argmax

✓
log p(D|✓)

(14)

where I(✓⇤) is the Fisher information matrix at ✓⇤. Assum-
ing ✓

⇤ is bounded and the likelihood function at ✓⇤ is dif-
ferentiable and continuous, the Fisher information matrix
is also bounded. This is because the bounded ✓

⇤ and the
continuity of the likelihood function preclude unbounded
derivatives. As |D| ! 1, we observe:

k|D|
�1

I(✓⇤)�1
� �

2
Ik! 0 (15)

for a sufficiently small � approaching 0. Therefore, we con-
clude:

sup
✓

|p(✓|D)�N (✓; ✓⇤,�2
I)| ! 0 (16)

as |D| ! 1 and � ! 0.

A.2. Proof of Proposition 3.2
Proof. We first introduce Lemma A.1, which is central to
our proof.

Lemma A.1. Denote v(✓) = �
1

|D| log p(✓) �

1
|D|
P

(x,y)2D log p(y|x, ✓) with p(✓) as a pre-defined
prior distribution. Under the regularity constraints on
v(✓) from Sec. 2.2 of [14], the total variation distance
DTV(p(✓|D),N (✓; ✓⇤,�H

�1)) between the posterior
distribution p(✓|D) and its Laplacian approximation
N (✓; ✓⇤,�H

�1) fulfills

|DTV(p(✓|D),N (✓; ✓⇤,�H
�1))� L|

 c(c23(v) + c4(v))
d
2

|D|

(17)

H(✓⇤) = r
2
✓⇤ log p(✓⇤|D) represents Hessian matrix. L 2

[0, c3(v)
dp
|D|

] is an explicit function of |D|. d is the di-

mension of ✓, c is an absolute constant, and c3(v), c4(v)
are constants computed from third/fourth-order derivatives
of v.

The definition of c, c3(v), c4(v) can be directly found in
[14]. This lemma is directly obtained from [14]. It is worth
noting that N (✓; ✓⇤,�H

�1) is the Laplacian approxima-
tion of p(✓|D). According to Sec. 3.3 of [34], the Hessian
matrix �H can be well-approximated by the dataset fisher
|D|F

D
✓⇤ . For a detailed discussion, see [34]. This shows that

�H
�1

! 0 when |D| ! 1. Lemma A.1 further enables:

DTV(p(✓|D),N (✓; ✓⇤,�H
�1))

 c(c23(v) + c4(v))
d
2

|D|
+ |c3(v)|

dp
|D|

(18)

Then, based on Lemma A.1, we have

DTV(p(✓|D), N(✓; ✓⇤,�2
I)) = sup

✓
|p(✓|D)�N (✓; ✓⇤,�2

I)|

 sup
✓

��p(✓|D)�N (✓⇤,�H
�1)
��

+ sup
✓

��N (✓⇤,�H
�1)�N (✓⇤,�2

I)
��

 c(c23(v) + c4(v))
d
2

|D|
+ |c3(v)|

dp
|D|

(Lemma A.1)

+

r
1

2
KL(N (✓⇤,�2I)||N (✓⇤,�H�1)(Pinsker’s inequality [3])

(19)

A.3. Proof of Proposition 3.3
Proof. When perturbations �✓ and �x are both small, we
can perform the first-order Taylor expansion as follows:

f(x, ✓ +�✓) = f(x, ✓) +

✓
@f(x, ✓)

@✓

◆T

�✓

f(x+�x, ✓) = f(x, ✓) +

✓
@f(x, ✓)

@x

◆T

�x.

(20)

It is worth noting that f(x, ✓+�✓) = f(x+�x, ✓) requires
✓
@f(x, ✓)

@✓

◆T

�✓ =

✓
@f(x, ✓)

@x

◆T

�x (21)

which generally holds true when �✓ ! 0 and �x ! 0.
Furthermore, for any small �✓ that is not near zero, there

also likely exists a solution to Eq. (21) when �x is treated
as an unknown. However, this solution may not be unique.
This situation arises because the matrix

⇣
@f(x,✓)

@x

⌘
is of-

ten of full rank, given that the dimension of f is usually
much lower than that of x and ✓. Additionally, the gradi-
ent @f(x,✓)

@x tends to be noisy within the context of neural
networks.

Similarly, for any perturbation �x, we can always find a
corresponding �✓ to satisfy Eq. (21). More specifically, we
only need to find a perturbation on the first layer parameters.

Let’s denote ✓ = {✓
l
} where ✓

l represents the parame-
ters of the lth layer of the neural network. Without loss of
generality, we can assume ✓

1 is linearly connected with x

without the bias variable, i.e.,

h
1
j = ReLU((✓1)Tx) = ReLU(

X

k

✓
1
kjxk) (22)

where h
1
j is the jth neuron in the first hidden layer. xk is

the kth element of x and ✓
1
kj is the corresponding weight

linearly connecting xk to h
1
j . Applying corresponding per-

turbations �✓
1
kj and �xk leads to

X

k

(✓1kj +�✓
1
kj)xk =

X

k

✓
1
kj(xk +�xk). (23)

The sufficient and necessary condition is

�✓
1
kjxk = ✓

1
kj�xk (24)

which shows that we can find the corresponding first-layer
parameter perturbations to mimic the perturbations on the
input space.

A.4. Proof of Proposition 3.4
Proof. 1. Global optimality of ✓⇤

Based on the Bernstein-von Mises theorem [10, 15] and
Proposition 1, we know that with a sufficiently large num-
ber of training samples, the posterior distribution of param-
eters approximates a Gaussian distribution. The mean of
this Gaussian distribution is the maximum likelihood esti-
mate ✓

⇤, and the covariance matrix approaches �2
I with �

sufficiently small and approaching 0. It’s important to note
that this proposition primarily focuses on the neighborhood
of an in-distribution x rather than the entire training set D.
In contrast, our focus is on an unlimited number of training
samples in the neighborhood of x, denoted as D(x), which
is well-represented by the classification model ✓⇤. By ap-
plying Proposition 1 directly, we obtain:

sup
✓

|p(✓|D(x))�N (✓; ✓⇤,�2
I)| ! 0 (25)

where ✓
⇤ = argmax✓ log p(D(x)|✓). As the posterior

distribution p(✓|D(x)) is a Gaussian distribution with a sin-
gle mode at ✓⇤, it follows that ✓⇤ is the global optimum.

2. The gradients are close to 0
Given f(x, ✓⇤) = log p(y|x, ✓⇤) for classification prob-

lems, we aim to prove:

@ log p(y|x, ✓⇤)

@✓⇤
= 0

@ log p(y|x+�x, ✓
⇤)

@✓⇤
= 0 8x+�x 2 N (x).

(26)

However, we only know that ✓⇤ is the maximum likelihood
estimate (MLE) given all the samples in the neighborhood
of x. Since ✓

⇤ is the MLE, we have:

@ log p(D(x)|✓⇤)

@✓⇤
=

@
P

�x log p(y|x+�x, ✓
⇤)

@✓⇤
= 0.

(27)
We assume the neighborhood of x is small (�x is small) and
they share the same label y. Without loss of generality, we
also consider that the neighborhood of x is a ball centered
at x and D(x) is sufficiently large to cover all possible �x

in the ball. By performing the first-order Taylor expansion
on log p(y|x+�x, ✓

⇤) at x when �x is small, we have

log p(y|x+�x, ✓
⇤) = log p(y|x, ✓⇤)

+

✓
@ log p(y|x, ✓⇤)

@x

◆T

�x.

(28)

Combining Eq. (27) and Eq. (28), we can derive that

@
P

�x log p(y|x+�x, ✓
⇤)

@✓⇤

=
X

�x

@

✓
log p(y|x, ✓⇤) +

⇣
@ log p(y|x,✓⇤)

@x

⌘T
�x

◆

@✓⇤

=
X

�x

@ log p(y|x, ✓⇤)

@✓⇤
+
X

�x

@ log p(y|x, ✓⇤)

@x@✓⇤
�x

= |D(x)|
@ log p(y|x, ✓⇤)

@✓⇤

+
@ log p(y|x, ✓⇤)

@x@✓⇤

X

�x

�x

!

|D(x)|!1
�������! |D(x)|

@ log p(y|x, ✓⇤)

@✓⇤
= 0.

(29)

It is important to note that the matrix @ log p(y|x,✓⇤)
@x@✓⇤ has a

dimension |✓| ⇥ |x|, and
P

�x �x = 0 since positive and
negative perturbations negate each other. Eq. (29) indicates
that

@ log p(y|x, ✓⇤)

@✓⇤
= 0. (30)

Similarly,

@ log p(y|x+�x, ✓
⇤)

@✓⇤

=
@ log p(y|x, ✓⇤)

@✓⇤
+

@ log p(y|x, ✓⇤)

@x@✓⇤
�x

=
@ log p(y|x, ✓⇤)

@✓⇤@x
�x =

@
@ log p(y|x,✓⇤)

@✓⇤

@x
�x

=
@0

@x
�x = 0.

(31)

This derivation relies on the assumption that the second par-
tial derivatives of log p(y|x, ✓⇤) are continuous, leading to
the equality @ log p(y|x,✓⇤)

@✓⇤@x = @ log p(y|x,✓⇤)
@x@✓⇤ as per Clairaut’s

theorem. Clairaut’s theorem states that for a function with
continuous second partial derivatives, the differentiation or-
der is immaterial.

A.5. Proof of Proposition 3.5
Proof. When �✓ ! 0 and by using Taylor expansion for
log p(y|x, ✓⇤ +�✓) at ✓⇤, we can derive

Ep(�✓) [KL(p(y|x, ✓⇤)||p(y|x, ✓⇤ +�✓))]

= Ep(�✓)

"
CX

c=1

p(y = c|x, ✓⇤) log p(y = c|x, ✓⇤)
p(y = c|x, ✓⇤ +�✓)

#

= Ep(�✓)

"
�

CX

c=1

p(y = c|x, ✓⇤)
✓
@ log p(y = c|x, ✓⇤)

@✓⇤

◆T

�✓

#

= Ep(�✓)

"������
CX

c=1

p(y = c|x, ✓⇤)
✓
@ log p(y = c|x, ✓⇤)

@✓⇤

◆T

�✓

�����

#

= Ep(�✓)

"�����

CX

c=1

p(y = c|x, ✓⇤)
✓
@ log p(y = c|x, ✓⇤)

@✓⇤

◆T

�✓

�����

#

 Ep(�✓)

"
CX

c=1

p(y = c|x, ✓⇤)

�����

✓
@ log p(y = c|x, ✓⇤)

@✓⇤

◆T
����� k�✓k

#

=
CX

c=1

p(y = c|x, ✓⇤)
����
@ log p(y = c|x, ✓⇤)

@✓⇤

����Ep(�✓)[||�✓||]

/ Ey⇠p(y|x,✓⇤)

����
@ log p(y|x, ✓⇤)

@✓⇤

����

�

(32)

B. Experiment Settings and Implementation
Details

B.1. The Pre-trained Model
While the pre-trained model could be more complex, we
conduct experiments under the assumption of using a sin-
gle deterministic neural network. Our goal is to demon-
strate the effectiveness of our method in quantifying epis-
temic uncertainty, specifically within such a deterministic

pre-trained network. We conducted experiments on four
datasets: MNIST, C10, SVHN, and C100. For all train-
ing sessions, we randomly allocate 10% of the training
data as validation data for model selection. We utilize an
RTX2080Ti GPU to perform all the experiments. Below,
we detail the training procedures for the pre-trained models
corresponding to each of the four datasets.
• MNIST: We employ a simple CNN architecture:

Conv2D-ReLU-Conv2D-ReLU-MaxPool2D-Dense-
ReLU-Dense-Softmax. Each convolutional layer
includes 32 filters with a 4 ⇥ 4 kernel size. We utilize a
max-pooling layer with a 2 ⇥ 2 kernel and dense layers
comprising 128 units. The SGD optimizer is used with a
learning rate of 1e-2 and a momentum of 0.9. We set the
maximum number of epochs at 30 and the weight decay
coefficient at 5e-4. The batch size is 128.

• C10: We utilize ResNet18 for feature extraction, con-
nected to a fully-connected layer for classification. The
SGD optimizer is employed with an initial learning rate
of 1e-1, decreasing to 1e-2, 1e-3, and 1e-4 at the 30th,
60th, and 90th epochs, respectively. The momentum is set
at 0.9, with a maximum of 100 epochs and a weight de-
cay coefficient of 5e-4. Standard data augmentation tech-
niques, such as random cropping, horizontal flipping, and
random rotation, are applied. The batch size is 128.

• C100: ResNet152 is used for feature extraction, con-
nected to a fully-connected layer for classification. The
SGD optimizer starts with an initial learning rate of 1e-1,
decreasing to 1e-2, 1e-3, and 1e-4 at the 40th, 70th, and
100th epochs, respectively. We keep the momentum at
0.9 and set the maximum number of epochs to 120, with
a weight decay coefficient of 5e-4. Similar to C10, stan-
dard data augmentation techniques are employed. The
batch size for C100 is 64.

• SVHN: We use a CNN architecture: Conv2D-ReLU-
Conv2D-ReLU-MaxPool2D-Dense-ReLU-Dense-
Dense-ReLU-Softmax. Each convolutional layer has 32
filters with a 4⇥ 4 kernel size. A max-pooling layer with
a 2⇥2 kernel is used, along with dense layers having 128
units. The SGD optimizer starts with an initial learning
rate of 0.05, reduced to 0.005, and 0.0005 at the 15th and
30th epochs. We set the maximum number of epochs at
50 and the weight decay coefficient at 5e-4. The batch
size is 64.

B.2. Implementation of Our Methods
• Class-specific Gradient Weighting: We compute gradi-

ents using torch.autograd, which facilitates straightfor-
ward backpropagation from the model outputs to the
model parameters.

• Layer-selective Gradients: The hyperparameter � was ad-
justed within the range of [0.1, 0.5], using increments
of 0.05. Ultimately, the selected values of � were de-

SVHN C100

MNIST C10

ACC

ACC

NLL

NLL

Figure 1. ACC and NLL for the MNIST, C10, SVHN, and C100 datasets across 10 active learning acquisition cycles are presented. In each
figure, the x-axis represents the number of data samples acquired for training the model, while the y-axis shows either the accuracy (ACC)
or the negative log-likelihood (NLL) on the testing data. The results are averaged over three independent runs.

termined as 0.3 for the MNIST dataset, 0.2 for the C10
dataset, 0.2 for the SVHN dataset, and 0.4 for the C100
dataset.

• Perturbation-Gradient Integration: Following the guide-
lines of Proposition 3.1, we selected a small value for the
hyperparameter �. It was tuned within the range [0.01,
0.05], in increments of 0.01. As a result, the value of �
was set at 0.02 for all four datasets. Additionally, to gen-
erate perturbed inputs, we utilized 100 samples.

B.3. Implementation of Baselines

The mathematical formulation of all baseline methods is
discussed in Section 5 of the main paper. Below, we pro-
vide detailed descriptions of their implementations.
• NEGrad, UNGrad, GradNorm, ExGrad: These gradient-

based methods are implemented using torch.autograd,
and notably, they do not require any hyperparameter tun-
ing. It’s noteworthy that we experimented with both L1
and L2 norms for computing gradient norms, recording
the best performing norm for each method.

• Perturb x: We introduce perturbations to the input x by
adding the Gaussian noise N (0,�2

I). The hyperparam-
eter � is tuned in the range of [0.005,0.05]. Specifically,
the values of � are determined to be 0.008 for the MNIST,
C10, and SVHN datasets, and 0.02 for the C100 dataset.
The number of perturbed inputs is set to 100.

• Perturb ✓: Perturbations are applied to all model param-
eters ✓ by adding the Gaussian noise from N (0,�2

I).
The hyperparameter � is tuned within the range of
[0.0001,0.01]. For the MNIST, C10, and SVHN datasets,
the optimal � is found to be 0.008, while for C100 dataset,
� is set to be 0.0003. The number of perturbed inputs is
set to 100.

• MC-AA: The MC-AA approach involves introducing per-
turbations to the input using adversarial attacks. These
attacks are performed through the Fast Gradient Sign
Method (FGSM), as described in the following equation:

xadv = x+ ✏ · sign(rxL(✓
⇤
, x, y)) (33)

In this equation, L represents the negative log-likelihood
loss, utilizing the predicted class as the label. The hy-
perparameter ✏ indicates the perturbation level, where
sign(u) is a function that outputs 1 if u � 0 and �1 if
u < 0. To create multiple samples, we uniformly select
✏ from the range [�a, a] with a being tuned in the range
of [0.0001, 0.01]. Based on this tuning process, we set
a at 0.0001 for MNIST, C10, and SVHN datasets, and at
0.0005 for the C100 dataset. The number of perturbations
is set to 100.

• Inserted Dropout: In all pre-trained models, we incorpo-
rate an extra dropout layer just before the final fully con-
nected layer. The dropout rate was subject to tuning, for
which we explore values within the range [0.1, 0.5], using
increments of 0.1. Ultimately, we set the dropout proba-
bility at 0.4 for all datasets.

• Entropy, ExGrad V Term: These can be directly calcu-
lated from the softmax output probabilities.

• LA: we employ the last-layer LA [16] with full Hessian
matrix computation. We use the existing software pro-
posed by [5], which is available at https://github.
com/AlexImmer/Laplace. All hyperparameters are
kept at their default settings as specified in the software.

B.4. Additional Information on Experiments
Uncertainty Calibration. The implementation of
metric rAULC is available at https://github.
com/janisgp/practicality_deterministic_
epistemic_uncertainty.
Active Learning.
• Model Details: We utilize a simple CNN architecture for

active learning across MNIST, C10, SVHN, and C100
datasets: Conv2D-ReLU-Conv2D-ReLU-MaxPool2D-
Dense-ReLU-Dense-Softmax. Each convolutional layer

includes 32 filters with a 4 ⇥ 4 kernel size. We utilize a
max-pooling layer with a 2 ⇥ 2 kernel and dense layers
comprising 128 units.

• Training Details: We employ the SGD optimizer, config-
ured with a learning rate of 0.01 and a momentum of 0.9.
The weight decay is set at 0.0005, and we use a batch size
of 128. In each active learning cycle, the model is trained
for up to 200 epochs to ensure convergence. This training
approach is consistently applied across all four datasets.
Additionally, during each active learning cycle, the best-
performing model on the validation data is saved.

• Splitting Training and Validation Data: Initially, we ran-
domly select the first m1 training samples from indices 1
to 10,000 in the training dataset. We ensure a balanced
selection where each class is represented by m1

C samples.
For validation purposes, we use the data samples indexed
from 10,001 to 20,000. This validation set is crucial for
model selection during the 200 training epochs of each
active learning cycle. Samples indexed above 20,000 in
the training dataset are reserved in an “unused training
pool”, which serves as a source for acquiring new samples
for subsequent retraining. In each cycle, we iteratively se-
lect m2 samples from this pool based on the highest epis-
temic uncertainty. Upon completion of each training cy-
cle, we assess the model’s accuracy (ACC) and negative
log-likelihood (NLL) using the original test dataset. We
set m1 = 20, 500, 500, 1000 and m2 = 20, 100, 100, 500
for MNIST, C10, SVHN, and C100 datasets, respectively.

C. Additional Active Learning Results
This section presents the visualizations of ACC and NLL
progression for all four datasets shown in Figure 1. We
arrive at the same conclusion as indicated in Table 3: our
proposed method consistently surpasses various baselines
in achieving the highest accuracy and the lowest negative
log-likelihood. For the MNIST dataset, the noticeable vari-
ance in the lines is likely attributed to the process starting
with only 20 samples and acquiring just 10 more samples
each time. This large variance could be due to the random-
ness inherent in the limited sample size and the training pro-
cess itself. For averaged ACCs and NLLs across the four
datasets, please refer to Table 3 in the main paper.

D. Additional Ablation Studies
D.1. Effectiveness of Component Contributions
Besides Table 4, we also provide additional results for
OOD detection and uncertainty calibration to demonstrate
the effectiveness of each component. These results, de-
tailed in Tables 6, support similar conclusions to those
in Section 5.4 of the main paper. Each component in-
dependently enhances performance, with the combination
of all components yielding the best results. Although all

Table 6. The following two tables illustrate the effectiveness of component contributions for our method. The first table presents additional
OOD detection results using AUROC (%) " and AUPR (%) ". The second table displays uncertainty calibration results measured by
rAULC. All experiments are aggregated over three independent runs.

Method
MNIST ! Omniglot C10 ! LSUN SVHN! C100 C100! LSUN

AUROC/AUPR AUROC/AUPR AUROC/AUPR AUROC/AUPR
ExGrad 97.55/96.99 88.23/82.26 88.57/85.55 76.93/71.00
REGrad 97.80/97.54 90.15/87.16 89.76/87.69 78.95/73.71
REGrad + layer-selective 98.01/97.86 90.79/88.86 90.07/88.11 79.01/74.61
REGrad + layer-selective + perturb 98.19/97.95 91.11/89.93 90.37/88.83 79.11/74.39

Method
MNIST C10 SVHN C100
rAULC rAULC rAULC rAULC

ExGrad 0.985 0.893 0.868 0.841
REGrad 0.985 0.893 0.869 0.846
REGrad + layer-selective 0.985 0.896 0.870 0.854
REGrad + layer-selective + perturb 0.985 0.898 0.873 0.858

Table 7. This table presents additional OOD detection results, highlighting the combination of layer-selective gradients and perturbation-
integrated gradients with UNGrad and ExGrad. For UNGrad, the hyperparameters are set to � = 0.2,� = 0.1 for the SVHN dataset and
� = 0.7,� = 0.05 for the C100 dataset. For ExGrad, � = 0.4,� = 0.02 are used for both the SVHN and C100 datasets. All experiments
are aggregated over three independent runs.

Method
SVHN ! C10 SVHN ! C100 C100! SVHN C100! LSUN
AUROC/AUPR AUROC/AUPR AUROC/AUPR AUROC/AUPR

UNGrad 68.28/69.21 68.34/68.95 44.34/43.44 47.46/45.41
UNGrad + layer-selective 75.41/75.52 75.49/75.11 82.44/75.87 73.47/65.53
UNGrad + layer-selective + perturb 78.71/76.54 77.48/74.98 85.08/79.84 75.49/70.03
ExGrad 88.57/85.55 88.25/85.21 79.99/72.86 76.93/71.00
ExGrad + layer-selective 89.57/87.76 88.54/86.66 80.91/73.90 76.79/70.74
ExGrad + layer-selective + perturb 90.57/89.64 89.64/88.58 81.09/74.39 78.23/73.43

components significantly improve OOD detection, the im-
pact on uncertainty calibration becomes marginal. This
may be partly due to the fact that a well-calibrated pre-
trained model typically outputs predictive probabilities that
closely match actual performance. By incorporating prob-
ability information through class-specific gradient weight-
ing, our gradient-based method achieves good calibration
performance, even without employing layer-selective and
perturbation-integrated gradient strategies. This scenario
presents a challenge in further enhancing calibration, par-
ticularly when focusing on pre-trained models. However,
as model complexity increases, these models tend to be less
calibrated. In such instances, employing layer-selective and
perturbation-integrated gradient strategies becomes more
advantageous for significant improvements. This is espe-
cially evident in the case of the C100 dataset.

We also demonstrate the effectiveness of layer-selective
gradients and perturbation-integrated gradients when com-
bined with other gradient-based methods such as ExGrad
and UNGrad. The OOD detection results for the MNIST
and C10 datasets are presented in Table 7. From these re-
sults, we can conclude that the two techniques we propose

can effectively enhance the performance of other gradient-
based methods.

D.2. Hyperparameter Analysis.

In addition to the analysis presented in Table 5, we fur-
ther evaluate the impact of the coefficient � in the layer-
selective gradients and � in the perturbation-integrated gra-
dients for the MNIST, C10, and C100 datasets. These ad-
ditional results are shown in Table 8, where we observe
similar conclusions: the performance is not overly sensi-
tive to the hyperparameters within certain ranges. It’s also
important to note that these hyperparameters were not de-
termined through an exhaustive brute-force search of all
possible parameter combinations. Furthermore, they were
chosen based on their overall performance across various
experimental tasks. While it’s possible that some hyperpa-
rameters might perform better in specific cases, the current
settings already provide the best performance in compari-
son to various baselines.

Table 8. OOD detection for hyperparameter analysis is presented using AUROC(%)/AUPR(%). A “***” symbol indicates the hyperpa-
rameters used in the main paper.

Method MNIST! Omniglot MNIST! FMNIST
REGrad + layer-selective (� ! 0) 97.80/97.54 98.42/98.45
REGrad + layer-selective (� ! 1) 97.71/97.17 97.70/97.27
REGrad + layer-selective (� = 0.25) 98.01/97.86 98.38/98.40
REGrad + layer-selective (� = 0.3) 98.01/97.86 98.51/98.55
REGrad + layer-selective (� = 0.35) 98.01/97.86 98.39/98.41
REGrad + layer-selective (� = 0.3) + perturb (� = .015) 98.13/97.91 98.74/98.76
REGrad + layer-selective (� = 0.3) + perturb (� = .02)*** 98.19/97.95 98.78/98.79
REGrad + layer-selective (� = 0.3) + perturb (� = .025) 98.18/97.95 98.87/98.88

Method C10! SVHN C10! LSUN
REGrad + layer-selective (� ! 0) 89.64/85.75 90.15/87.16
REGrad + layer-selective (� ! 1) 89.87/86.76 90.65/88.71
REGrad + layer-selective (� = 0.15) 90.29/86.51 90.94/88.11
REGrad + layer-selective (� = 0.2) 90.33/87.45 90.79/88.86
REGrad + layer-selective (� = 0.25) 90.45/86.92 91.02/88.30
REGrad + layer-selective (� = 0.2) + perturb (� = .01) 92.50/89.08 91.01/89.03
REGrad + layer-selective (� = 0.2) + perturb (� = .015) 92.45/89.08 91.06/89.37
REGrad + layer-selective (� = 0.2) + perturb (� = .02)*** 92.32/89.42 91.11/89.93

Method C100! SVHN C100! LSUN
REGrad + layer-selective (� ! 0) 81.43/81.12 78.95/73.71
REGrad + layer-selective (� ! 1) 86.74/82.15 76.93/72.40
REGrad + layer-selective (� = 0.35) 87.22/83.34 78.66/74.12
REGrad + layer-selective (� = 0.4) 87.32/83.39 79.01/74.61
REGrad + layer-selective (� = 0.45) 87.38/83.25 78.91/74.57
REGrad + layer-selective (� = 0.4) + perturb (� = .015) 87.89/84.93 78.98/74.45
REGrad + layer-selective (� = 0.4) + perturb (� = .02)*** 88.06/85.74 79.11/74.39
REGrad + layer-selective (� = 0.4) + perturb (� = .025) 88.01/85.52 78.91/74.23

Table 9. Runtime analysis for UQ in seconds (s).

Method C10 UQ Runtime
NEGrad 18.73s
UNGrad 33.45s
GradNorm 18.54s
ExGrad 34.72s
Perturb x 32.56s
Perturb ✓ 43.16s
MC-AA 32.56s
Inserted Dropout 16.15s
Entropy 3.05s
ExGrad V Term 2.52s
LA 22.61s
REGrad 33.28s
REGrad + layer-selective 29.27s
REGrad + layer-selective + perturb 75.87s

D.3. Efficiency Analysis for UQ.

While the complexity of both layer-selective gradients and
perturbation-integrated gradients is discussed in Section 4,

Table 9 provides their empirical runtime, specifically for
computing the uncertainty of 1000 C10 images. Entropy-
based methods are the most efficient, requiring only a single
forward pass for uncertainty calculations. In comparison,
gradient-based and perturbation-based methods demon-
strate similar efficiency levels. Perturbation-based meth-
ods necessitate multiple forward passes, whereas gradient-
based methods require both forward and backward passes.
However, the efficiency of gradient-based methods can be
enhanced through parallel computing. Due to the limita-
tion of torch.autograd, which can only compute gradients
of scalar functions of the input, we compute the gradients
for each test sample sequentially (with a batch size of 1).
For other baselines, except for gradient-based methods, we
use a batch size of 32. Methods like ExGrad, UNGrad, and
REGrad are more time-consuming than NEGrad and Grad-
Norm because they require sequential computation of gra-
dients for each class’s probability. Although certain com-
putations in class-wise gradient calculations can be reused,
torch.autograd does not support parallel computation of gra-
dients. Moreover, as discussed in Section 4 of the main

Table 10. ViT Results with AUROC(%)/AUPR(%).

Method C10 ! SVHN C10 ! LSUN C100 ! SVHN C100 ! LSUN
UNGrad 78.77/72.51 84.83/76.61 70.20/60.06 72.08/60.19
GradNorm 53.03/58.91 72.84/71.04 56.30/54.84 63.76/57.20
ExGrad 92.41/88.06 89.06/86.55 85.47/78.91 85.55/79.68
Perturb ✓ 89.13/81.26 90.70/81.59 84.35/77.37 85.70/77.74
Ours 96.62/95.69 94.99/94.06 90.22/88.61 88.38/85.10

paper, employing layer-wise gradient strategies does not
add to the complexity. However, the perturbation-integrated
gradient strategy requires additional time, mainly due to
the need for extra forward propagation compared to other
gradient-based methods.

D.4. Varying Model Architecture
We further train the model using a Vision Transformer (ViT)
for the C10 and C100 datasets. The training procedure ad-
heres to the guidelines provided in the GitHub repository
at https://github.com/kentaroy47/vision-
transformers-cifar10. We utilize the ViT-timm
model, following the default hyperparameters. As shown
in Table 10, the OOD detection results for the C10 and
C100 datasets demonstrate improved performance using
ViT compared to ResNet. Our method continues to out-
perform baseline approaches.

