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1. Overview

FreeMan consists of data from 10 types of scenarios and 27
locations, and lighting conditions are various among loca-
tions. Meanwhile, we adopt different action sets for scenar-
ios to make FreeMan more diverse. In this section, we first
compare FreeMan with existing relevant works to visually
demonstrate its diversity. Then, we showcase more examples
from various perspectives, including scenes, lighting con-
ditions, and occlusions, to provide a more comprehensive
representation of FreeMan.

1.1. Comparison with Existing Datasets

By showing example frames in Fig. 1, we demonstrate the
breadth and realism of our 3D human body dataset, which
surpasses previous works by encompassing diverse and dy-
namic real-world conditions. We believe that our dataset
will serve as a valuable resource for advancing research in
computer vision, human pose estimation, and action recog-
nition.

1.2. Scenes

In this section, we provide an overview of the 10 scene
categories included in FreeMan. Fig. 2 presents three images
for each scenario categories. It can be seen that background
are much different across scenarios. For each category, we
present three representative images that capture the essence
of the scene and highlight the diversity of actions performed.

1.3. Lighting

This section focuses on the different lighting conditions cap-
tured in our dataset. We specifically address challenging
lighting scenarios such as backlighting and overexposure,
which are common in real-world environments. We include
a collection of images in Fig. 3 that demonstrate how Free-
Man represents these variations and challenges in lighting.
Besides well-lit cases, there are also challenging cases of
backlighting, which is also common in real world.

1.4. Occlusion

The third section highlights human occlusion phenomena,
encompassing both object interactions and self-occlusion
during complex actions as shown in Fig. 4. We provide
visual examples showcasing instances where the human body
is partially or fully occluded by objects, as well as instances
where self-occlusion occurs during intricate movements.

2. Limitations & Future Work
FreeMan is the first attempt to address the challenges of
3D human pose estimation in real-world environments with
diverse variations. However, it is important to acknowledge
that the real world encompasses a multitude of variables, and
there are additional conditions that can be further explored.
Despite the limited size of FreeMan, it serves as a catalyst for
advancing algorithmic research in this domain and provides
a means to evaluate the performance of existing methods
under varying conditions.

Currently, our pose annotations are in the form of 17
keypoints following the COCO format. However, given the
increasing demand for fine-grained human body modeling,
the estimation of whole-body key points has become more
crucial. In future work, we can consider expanding our
pose annotations to cover the entire body, enabling more
comprehensive analysis and modeling.

In addition to pose estimation, we have also extended
FreeMan dataset to improve the performance of human body
rendering algorithms in real-world scenarios. Leveraging the
data collected under diverse and dynamic environmental con-
ditions, FreeMan offers a more realistic input for studying
the robustness of human body rendering algorithms. Fur-
thermore, in addition to NeRF-based algorithms [24], future
research can explore the application of recent dynamic 3D
Gaussian splatting algorithms [14] with FreeMan dataset.

3. Toolchain
In this section, we introduce more details of our toolchain.
this section focus on pixel alignment for camera calibration
and erroneous pose detection.

3.1. Camera Calibration

To calibrate camera accurately, FreeMan adopts two-stage
camera calibration. Before collecting each session, we col-
lect frames of chessboard and conduct standard calibration
process in OpenCV [2, 26]. At this stage, we first calibrated
the cameras by capturing at least thirty frames of a cali-
bration board with each camera to determine their intrinsic
parameters. Next, the cameras were fixed in a stationary
position on tripods, and all cameras simultaneously captured
images of a calibration board at the central position to calcu-
late the extrinsic parameters. However, due to variations in
lighting conditions and distances from certain perspectives,
errors in estimating the extrinsic parameters are inevitable in
this step.
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Figure 1. Comparison between FreeMan and existing multi-view 3D human datasets, and all images maintain their original aspect ratio.
H-Eva, H3.6M and M-I-3D represents Human-Eva [21], Human3.6M [7] and MPI-INF-3DHP [17], respectively. Datasets except for
FreeMan are all collected in fixed laboratory environment. Although MPI-INF-3DHP composites different textures to the background, its
human-object interaction and action sets are much simpler.

To address the errors in extrinsic parameter calibration,
we introduce pixel alignment and calculate dense image
matching points using synchronized video content. By lever-
aging well-synchronized video data, we can establish corre-
spondence between pixels in different camera views, allow-
ing for more accurate estimation of the extrinsic parameters.

We use LightGlue [13] to calculate image correspon-
dances between adjacent views. For all 8 viewpoints, we
take each viewpoint as the center and select three consecutive

viewpoints as a group. For each group, the pixel matcher
calculates matching pairs of pixels between two adjacent
views and then filters out the pairs of pixels that are common
to the three views. For each set of videos, we select frames
containing at least 50 sets of pixel pairs, and then use these
pixel pairs to calculate camera extrinsic parameters. Once
this process is completed for all viewpoints, we perform co-
ordinate system matching to align all the viewpoints within
the same world coordinate system.
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Figure 2. Example images of 10 kinds of scenarios. For scenes shown in leftmost six columns, various of background from different views
are presented. For outdoor scenes such as cafe, platform, courtyard and square, various locations are included.
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Figure 3. Example images for lighting conditions. The first row
presents cases of backlit, resulting in reduced visibility and a rel-
atively darker appearance of the person. The second row shows
cases of well-lit, which is normal cases in real world.

3.2. Erroneous Detection & Correction

As presented in Sec. 4.2 in paper, we propose an error detec-
tion pipeline and then correct detected frames manually to
deal with potential error from 2D pose estimator efficiently.

Given an estimated human pose, we feed it to a pre-

trained conditional image generator, ControlNet [25] with
Stable Diffusion v1.5 [20]. Original frame is also applied
as a condition for synthesis by DDIM inversion [18]. Be-
sides, scenario category, actions and brief description of
actor in each session are input as text prompts. Then we
use SAM [9] to process synthesized and original images
and obtain binary human masks, using keypoints as prompts.
If intersection-over-union (IoU) between the two masks is
lower than pre-defined threshold, corresponding pose is clas-
sified as erroneous one and then will be correct by human an-
notator. Fig. 6 present results of correct and erroneous poses.
We use implementation of Diffuser [23] for image generator
and official implementation of SAM. Notably, as ControlNet
expects poses in OpenPose format [4], we transfer COCO-
format annotations to OpenPose and plot the skeleton image
in corresponding color pattern. Neck in OpenPose skeleton
is defined to be the mid-point between shoulder keypoints.
Moreover, we use DeepDataSpace [1] as manual annotation
tool which supports annotation by dragging keypoints.

4. Experiments

In this section, we present more details about experiments of
benchmarks we set and provide further results of extensive
experiments.
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Figure 4. Examples of occlusion in FreeMan. Top row shows self-occlusion and the bottom row presents occlusions in human-object
interactions.

4.1. Monocular 3D Human Pose Estimation

For training of HMR [8], we use Adam optimizer with
fixed learning rate of 2.5× 10−4. Training processes are
conducted on a single NVIDIA RTX-3090-24GB GPU
with batch size of 128. Additionally, for training of
PARE [10], we use Adam optimizer with fixed learning
rate of 5.0× 10−5 at the backbone and head of the network.
Training processes are conducted on a single NVIDIA RTX-
3090-24GB GPU with batchsize of 128. Only 2D and 3D
keypoints in FreeMan are converted to the format of Human-
Data provided in mmhuman3D [5]. And for finetuning of
PARE, we use Adam optimizer with fixed learning rate of
1.0× 10−5. The training process are conducted on a single
NVIDIA RTX-3090-24GB GPU with batchsize of 128.

We conduct cross-dataset test on FreeMan, Human3.6M
and HuMMan, the results of HMR on all test sets are shown
in the Tab. 1. When testing on Human3.6M, in-domain
test obtains the lowest error while models trained on Free-
Man achieves the second place (192.19mm) and surpass
model trained on Human3.6M (465.1mm) greatly. For HuM-
Man test set, model trained on FreeMan still achieves better
performance than than on Human3.6M. Since some recent
work [10] improves models’ performance through dataset
mixture, we further finetune the pre-trained PARE model,
and results are shown in Tab. 2. It can be seen that the 3D
HPE performance improvement by fintuning on FreeMan is
still higher than HuMMan.

We believe that the improvements mentioned above are
due to the diversity of the FreeMan dataset mentioned in
dataset overview, which makes the model more robust and
generalizable. At the same time, the noticeably higher
MPJPE on the FreeMan test set compared to other test sets
indicates that the FreeMan is also a challenging benchmark.

Train
MPJPE/PA-MPJPE(mm) Test

H36M HuMMan FreeMan

H36M 98.62/59.17 392.89/175.94 350.97/178.85
HuMMan 465.1/224.53 - 413.26/218.28
FreeMan 192.19/112.7 302.09/147.67 148.22/100.56

Table 1. Cross-domain test results of HMR with the same supervi-
sion 2D&3D KPTs. MPJPE & PA-MPJPE are presented in unit of
mm. Due to limited amount of data, all released part of HuMMan
are used as training data.

Datasets Supervision Train MPJPE PA
HuMMan 2D + 3D KPTs + SMPL FT 85.4 49.2
HuMMan 2D KPTs + SMPL FT 78.9 49.4
FreeMan 2D + 3D KPTs+ SMPL FT 76.5 48.3
FreeMan 2D KPTs + SMPL FT 76.1 48.9

Table 2. Finetuning pre-trained PARE model on FreeMan and
HuMMan. FreeMan can bring larger improvement compared with
HuMMan.

4.2. 2D-to-3D Pose Lifting

For training data in 2D-to-3D pose lifting, we use Hu-
man3.6M data provided by VideoPose3D [19], 70% of re-
leased data from HuMMan and training split of FreeMan,
respectively. Following the original setting in HuMMan [3],
we split released data of 100 subjects into training and test
set by subjects. For FreeMan, we select one view from every
session and down-sample the videos to 15FPS, resulting in
the frame number to be 350K, which is similar to the amount
of released part of HuMMan (253K) and much smaller than
Human3.6M (1500K). Following [3], we unify the test set to
be AIST++ [11] in order to verify the generalization across
datasets. And test set of FreeMan are used for reference.

During training, coordinates of 2D keypoints are normal-
ized by height and width of corresponding images. Ground



Figure 5. Example of calculated image correspondances of 5 scenes. Three adjacent viewpoints form one group, and three groups for each
scenario .

truth 3D poses are transferred into camera coordinate system
and root of skeleton is placed to origin. During test, since
resolution of images are different among datasets, input 2D
keypoints are normalized by resolution of test images. Key-
points in COCO format are mapped to that in Human3.6M
format following mmHuman3D [5].

All models are optimized using Adam optimizer with
learning rate of 10−4 on one NVIDIA RTX-3090-24GB.

SimpleBaseline [16], VideoPose3D [19] are trained for 80
epochs with batch size of 1024 and PoseFormer [28], MH-
Former [12], PoseFormerV2 [27] are trained for 25 epochs
with batch size of 256 following their original settings. We
show the results of VideoPose3D, PoseFormer and Pose-
FormerV2 in Tab. 3.
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Figure 6. Results of erroneous pose detection. Original images, estimated pose by 2D pose estimator and synthesized images are presented
in three rows, respectively. The left part shows cases of correct pose annotation, while the right part presents cases of erroneous poses. In the
synthesized image, erroneous pose annotation usually results a completely different body part from the corresponding part in the original
image, which means lower IoU (Intersection over Union) for the human body mask compared to the correct annotation.

4.3. Multi-view 3D Human Pose Estimation

In multi-view 3D human pose estimation, we use 4 views
from both Human3.6M and FreeMan as input to VoxelPose.
For Human3.6M, we follow the same processing steps as
Transfusion [15]. For FreeMan, videos from odd-indexed
views in training split are downsampled by 5 times to make
data scale comparable. Note single frame from all input views
as one group, Human3.6M and FreeMan include 223K and
132K groups of training data, respectively.

We first finetune ResNet-50 [6] backbone pre-trained on
COCO with each dataset for 10 epochs, and then optimized
the latter modules in decoder for additional 15 epochs. Both
the two stages use Adam optimizer with a learning rate of
1e−4 and batch size of 32. Models are trained on 4 NVIDIA
A100-80GB GPUs. To solve the difference between joint def-
initions, we select 13 common joints between Human3.6M
and COCO format, and then use the mid-points of the left &
right hips and left & right shoulders to generate mid-hip and
neck. In experiments, mid-hip is used as the root joint. The
images are all cropped by human bounding boxes and then
resized to make short edges the same.

In Tab. 4, we report recall and MPJPE@500mm of each

experiment. In calculation of Recall@500mm, only pre-
dictions with MPJPE smaller than 500mm are treated as
positive predictions and a higher recall value refers to higher
successful rate to locate humans in space. And only positive
predicted poses contribute to MPJPE in the final column.

Without ground truth root location, the model trained on
Human3.6M is unable to locate human in cross-domain test
and thus corresponding MPJPE is not available. Even though
the ground truth root positions are given, recall value and
MPJPE of model trained on Human3.6M are still 96.20%
and 103.02mm, which is lower than that of model trained
on FreeMan in cross-domain test without GT root (96.68%
& 61.29mm), demonstrating that our training set has better
transferability and test set is more challenging.

4.4. Neural Rendering of Human Subjects

4.4.1 Implementation Details

We use 128 samples per ray and train for 400K iterations
with the Adam optimizer as the setting in [24]. Samely,
to improve the quality of our results, we have increased
the number of rays sampled for the foreground subject, as
identified by the segmentation masks. We achieve this by



Algorithm Train Test MPJPE (mm)↓ PA (mm)↓

VideoPose3D

FreeMan FreeMan 88.68 49.17
FreeMan† FreeMan 73.98 45.22

Human3.6M AIST++ 190.46 146.98
HuMMan AIST++ 265.10 125.56
FreeMan AIST++ 146.66 99.01↑21.15%
FreeMan† AIST++ 141.84 94.59↑24.66%

PoseFormer

FreeMan FreeMan 92.94 64.91
FreeMan† FreeMan 77.68 54.39

Human3.6M AIST++ 179.54 151.38
HuMMan AIST++ 158.13 96.98
FreeMan AIST++ 133.39 90.10↑7.09%
FreeMan† AIST++ 133.89 84.68↑14.52%

PoseFormerV2

FreeMan FreeMan 92.11 64.91
FreeMan† FreeMan 90.81 55.98

Human3.6M AIST++ 236.23 154.93
HuMMan AIST++ 205.73 103.80
FreeMan AIST++ 131.13 87.24↑15.95%
FreeMan† AIST++ 113.89 80.61↑22.34%

Table 3. Performance of methods with different training and testing
datasets in 2D-to-3D Pose Lifting. PA stands for PA-MPJPE. † refer
to experiments with the whole training set of FreeMan. Smaller
MPJPE and PA-MPJPE indicate better performance. Highlighted
rows show training on our dataset achieves the best performance in
the transfer test. ↑ refers to the improvement relative to HuMMan.

Train Test Recall@500mm (%) ↑ MPJPE (mm) ↓
Human3.6M Human3.6M 100 25.95
Human3.6M FreeMan 0.06 -
Human3.6M FreeMan (w/ GT Root) 96.20 154.41

FreeMan FreeMan 99.97 26.61
FreeMan Human3.6M 96.68 62.37
FreeMan Human3.6M (w/ GT Root) 100.00 58.30
FreeMan FreeMan† 99.98 35.04

Table 4. Results of VoxelPose [22] for Multi-View 3D Pose Esti-
mation. Recall@500mm refer to ratio of predictions with MPJPE
smaller than 500mm, MPJPE here has not threshold for all key-
points. FreeMan† represents test set of even indexed cameras.
Ground truth root position (GT Root) is not used if not specified.
Rows highlighted shows the best setting in cross-domain test.

implementing a random ray sampling method that assigns
a higher probability of 0.8 to foreground subject pixels and
a lower probability of 0.2 to the background region. The
resize scale of the image is set to 0.5. It takes about 48 hours
to train on one NVIDIA RTX-3090-24GB for each one.

In order to ensure the quality of training, the number of
frames of video clips in different scenes is in the interval of
300 to 1200 frames. The selected ten clips contain a variety
of actions, ranging from slow and deliberate movements
(such as warm-up exercises) to fast and energetic ones (such
as dancing).

4.4.2 Visualization Results

We show the visualization results of the reconstruction of
the selected videos in FreeMan dataset at Fig. 7. The above
two lines reflect the results of relatively good reconstruction,
while the following two lines reflect the results of relatively

Training
View

Ground
Truth

Novel View 1 Ground
Truth

Novel View 2 Ground
Truth

Novel View 3 Ground
Truth

Figure 7. Rendering results for selected sessions of 30FPS. The
lower two rows present cases of bad rendering results.

Figure 8. Example images of motion blur on human body in ses-
sions of 30FPS. Image patches within bounding boxes at upper row
are shown at lower row.

poor reconstruction. This indicates that FreeMan has suffi-
cient diversity and challenges for human reconstruction.

4.4.3 Experiments on data of 60FPS

Due to the occurrence of blur as Fig. 8 in body parts such
as hands and feet when moving at high speeds, we col-
lect videos at 60FPS to provide higher quality ground truth.
We conduct experiments on two video clips from Park and
Square scenes, and the experimental results are as Tab. 5.
The results indicate that FreeMan remains highly challenging
for human neural rendering in natural lighting conditions.

5. Dataset Documentations
FreeMan is available for academic communities to boost
related researches. Example code to load FreeMan in py-



Figure 9. Left: Data collection agreements for actors involved in FreeMan. Middle: Illustration of users’ responsibility and usage agreement
for actors. Right: Usage agreement for dataset users. Information collected will not be published are only for backup. Identity information
are omitted.

Scene PSNR↑ SSIM↑ LPIPS∗ ↓
Square 23.99 0.9389 88.10
Park 24.43 0.9527 61.84

Table 5. Neural rendering in 60FPS results by using Human-
NeRF [24]. LPIPS∗ = LPIPS ×103.

torch is available on Github and data storage structure are
illustrated in this section.

5.1. Data Format

FreeMan consists of multi-view human motion data and cor-
responding 2D / 3D human pose annotations. All data are
separated into videos, camera parameters, bounding boxes
and keypoints annotations basd on data type. For each ses-
sion, human motion videos of all views are stored in format
of mp4 and there are 8 synchronized videos for 8 views.
Camera parameters, including image resolution, camera in-
trinsic parameters and camera extrinsic parameters, are saved
in JSON format.

Human keypoint annotations are encoded into format of
npy, which is also known as numpy array. 2D poses of one
session are stored with an array whose shape is [V, F, J, 2],
where V for view indexes, F for frame number, J for total
number of joints and keypoint locations are given by (x, y)
coordinates in unit of pixels. 3D poses are stored in an
array with shape of [F, J, 3], and 3D keypoint locations are
provided by (x, y, z) in world coordinate system.

5.2. License & Ethical Impact

As FreeMan is constructed for research purpose only, Free-
Man adopts license of CC BY-NC 4.0 (Non-Commercial use
only). Furthermore, subsequent users who are granted access
to the dataset are required to sign relevant usage agreements
and provide backup information. This is done to safeguard
the privacy and security of individuals associated with the
FreeMan dataset and prevent data misuse.

All actors involved in FreeMan are recruited on basis
of voluntary and well informed of data collection purpose.
All volunteers signed a data collection agreement which
declares project proposal and data to be released, which is
shown in Fig. 9. To protect the privacy of all participants,
we anonymized all data in the dataset by removing any per-
sonally identifiable information.

Major potential social impacts for human related research
are about privacy leakage. We have taken several steps to
protect the privacy and anonymity of the individuals involved
in the dataset. All data subjects provided informed consent
before participating, and we have anonymized all data to
the best of our abilities to ensure the non-disclosure of any
personal information of the actors. Furthermore, we under-
stand the importance of data governance and the need to
address potential misuse or unintended consequences. We
encourage researchers and users of our dataset to handle the
data responsibly, following ethical guidelines and respecting
privacy considerations. Before getting access to our data,
researchers will be required to sign an agreement to obey our
license. We are committed to ongoing discussions and col-
laborations with experts in the field to address any concerns



and ensure that our work contributes positively to the re-
search community while minimizing any potential negative
social impact.

5.3. Maintenance Plan

To access FreeMan data, users are required to sign a dataset
usage agreement that illustrates responsibilities and require-
ments. After submitting signed agreement and basic infor-
mation via online forms, they can download FreeMan from
dataset host. All users should abide the relevant data use
agreement and use rights will be terminated for any viola-
tions of data use agreement. Application procedure requires
applicants to submit their basic information for backup and
our data are available on Huggingface and OpenDataLab for
research community.

5.4. Agreements

Specifically, we present agreements for both actors and users
in Fig. 9. The leftmost two pages are for actors in the project.
The first page is to explain this project and show data type
while the second page is to show how our data will be pub-
liced and used.

The last page is required for users to sign before access
FreeMan, explaining users’ responsibility. Information is
collected for backup purposes only.
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