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Figure A1. Illustration of the demonstration video samples. We randomly select four examples on the left named baby, fork, bottle,

and eye videos from the Real-world Dataset and the two examples on the right (with magnification factor α and noise level σ, respectively)

from the Synthetic Dataset as the demonstration video samples in the demo file FD4MM demo.mp4.

The manuscript comprehensively analyzes and validates

the proposed FD4MM through various qualitative and quan-

titative experiments. However, due to page space limita-

tions, we do not extend the detailed descriptions of the data

source and showcase more magnified results. Here, we of-

fer a more intuitive explanation and demonstration of the

data sources and instantiation examples. Furthermore, sup-

plementary experiments are provided to demonstrate the su-

periority and effectiveness of FD4MM.

1. Summary of Contents

In this supplementary material, Section 2 introduces the

widely-used Real-world Dataset and the newly proposed

Synthetic Dataset in this work. Section 3 provides more

instantiation results and compares our method with current

learning-based methods [2, 4, 5] on these demonstration

video samples. Please refer to FD4MM demo.mp4 in the

supplement folder for more detailed information. Further-

more, Section 4 supplements the additional experiments to

conduct comprehensive validation and analysis from multi-

ple perspectives.

2. Dataset Introductions

In this field, existing learning-based methods [2, 4, 5] are

uniformly trained on the training dataset proposed by [2].

Note that all the methods are trained on the same dataset

from [2] without any fine-tuning to ensure fair comparisons.

The performance evaluation of the models is performed by

Mode Video Time (s) Resolution (pixels) FPS

Static

Baby [2, 8] 10 960 × 544 30

Fork [1] 4 544 × 640 30

Drum [2, 8] 18 640 × 360 25

Engine [8, 9] 12 1776 × 904 25

Crane [2, 8] 8 720 × 1280 24

Face [8, 9] 10 528 × 592 30

Dynamic

Gunshot [2, 5] 2 720 × 576 24

Cattoy [2, 5] 20 640 × 360 30

Eye [6, 10] 12 720 × 576 30

Bottle [2, 10] 6 568 × 320 30

Drill [4, 5] 2 1280 × 720 24

Balloon [4, 5] 5 720 × 480 30

Table A1. Video specification details of the Real-world Test
Dataset.

cross-dataset testing. We will detail the test datasets used in

the manuscript as follows.

2.1. Real-world Dataset

The Real-world Dataset exhibits rich motion complexity

and uncertainty, and it has been widely used in previous

works [1, 2, 5–10] for cross-dataset testing in the motion

magnification task. It consists of 12 videos from classic mo-

tion scenarios widely used in previous works, which can be

split into two modes [2, 4, 5]: (1) static mode (inference on

initial frame I(x, 0) and current frame I(x, t)) and (2) dy-

namic mode (inference on continuous frames {I(x, t−1),
I(x, t)}). In addition, we report the detailed time lengths,

resolution sizes, and frame rates of all videos in Table A1.
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(a) Comparisons of magnified results with SOTA methods on the Real-world Dataset

(b) Comparisons of magnified results with the SOTA method on the Synthetic Dataset
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Figure A2. Visualization samples from the demonstration video. We capture the magnified images at a random timestamp of video for

illustration visualization. In terms of static visualization, we can see our FD4MM exhibits higher magnification quality. These results are

also verified by objective quantitative metrics such as LPIPS and MANIQA in the manuscript. The dynamic magnified results of these

video samples are displayed in the appendix file FD4MM demo.mp4.

2.2. Synthetic Dataset

The Synthetic Test Dataset consists of 10 videos of 1s with

a resolution size of 640×640. Each video is synthesized

with a foreground object from the public StickPNG library 1

and a background image from the DIS5K dataset [3]. As

shown in the right side of Fig. A1, by controlling the mag-

nitude of foreground object motion and simulating photo-

graphic noise, we evaluate the magnification accuracy at

various magnification factors α and noise robustness at var-

ious noise levels σ. Here, the synthetic process of all syn-

thetic data follows the rule of [2, 7], including the control of

the magnification factor and the process of simulating noise.

3. Demonstration Examples

3.1. Real-world Examples

As shown in Fig. A2 (a), we provide four video examples

from Real-world Dataset for intuitive visual demonstration

and comparison, i.e., the “baby”, “fork”, “bottle”, and “eye”

videos. Please refer to FD4MM demo.mp4 in the supple-

ment folder for more detailed information.

“Baby” Video. The video has subtle abdomen baby

breathing motion and an almost fixed background, thus us-

ing the static inference mode for all methods. It is observed

that at the magnification factor α of 20, all previous SOTA

methods [2, 4, 5] can capture and magnify the breathing mo-

tion on the baby’s abdomen but generate significant flicker-

ing artifacts and introduce ringing artifacts and distortion at

the baby’s abdomen. In contrast, our FD4MM effectively

suppresses these issues with clearer magnification.

“Fork” Video. The ”fork“ video exhibits rapid and sub-

tle vibrations along with some level of camera shake. In

the static inference mode and with a magnification factor

1https://www.stickpng.com/

α of 20, our FD4MM, compared to previous SOTA meth-

ods [2, 4, 5], reduces ringing artifacts on the vibrating fork

and is better compatibility with camera shake, thus avoiding

the occurrence of flickering artifacts.

“Bottle” Video. The bottle in the video moves for-

ward along the horizontal direction, which makes the bot-

tle twisted, artifacts and distortion in the SOTA meth-

ods [2, 4, 5] in the dynamic inference mode and a magnifi-

cation factor α of 10. There are especially serious ringing

artifacts in the result of MDLMM [5]. In our result, the

magnified result of the bottle has better spatial consistency

and a more stable background in the video.

“Eye” Video. The eye in the video exhibits a turning

pupil and numerous details, such as blood and eyelashes. In

dynamic inference mode and with the magnification factor

α of 15, previous SOTA methods [2, 4, 5] caused damage to

the pupil structure and blurring of eyelash details, while our

result preserves a more complete eye structure and clearer

details with fewer flickering artifacts and distortion.

3.2. Synthetic Examples

The manuscript has provided sufficient quantitative exper-

iments on the Real-world Dataset. Here, we supplement

some Synthetic examples to provide an intuitive analysis of

the magnified results of the synthetic videos. We validate

the effectiveness of our proposed FD4MM at magnification

factor α and noise level σ. As shown in Fig. A2 (b), the

reference video is selected from the Synthetic Dataset with

a skateboard image background from the DIS5K dataset [3]

and the foreground of the white ball from the public

StickPNG library. Please refer to FD4MM demo.mp4 in

the supplement folder for more detailed information.

Magnification Factor α Test. As the magnification fac-

tor α increases, achieving accurate magnification becomes

more challenging. As shown in the demonstration video,



Method Subjective Evaluation
Magnified Effect ↑ Magnified Quality ↑

LBVMM [2] 3.65 ± 0.13 3.42 ± 0.14

LNVMM [4] 3.65 ± 0.14 3.40 ± 0.14

MDLMM [5] 3.96 ± 0.11 3.58 ± 0.13

Ours 4.33 ± 0.12 4.25 ± 0.12

Table A2. User studies on the Real-world Test Dataset for mag-
nified effects and quality are results of MOS with 95% confi-
dence intervals.

both our FD4MM and MDLMM method [5] successfully

magnify the motion of the ball in the synthetic video at dif-

ferent α. However, it is evident that the results obtained

with MDLMM exhibit undesired deformations and artifacts

on the moving ball. In contrast, our results not only magnify

the motion of the ball accurately but also better preserve the

overall structure and details of the ball, reducing informa-

tion loss caused by magnification.

Noise Level σ Test. When increasing the noise level σ
in the video, motion magnification is susceptible to interfer-

ence from the noise. Even though the MDLMM method [5]

achieves magnification, the motion of the ball in the magni-

fied results exhibits more artifacts and distortion when deal-

ing with noise interference. However, our FD4MM demon-

strates greater noise robustness in reducing artifacts and dis-

tortion caused by noise. Particularly, when the noise level σ
is higher, our magnified results exhibit a more pronounced

suppression of noise compared to MDLMM, and the motion

of the ball is more accurate and complete.

4. Additional Experiments
4.1. User Study

To further understand the real visual effects of our method

compared to others, we conduct a user study evaluation on

the magnified results of each learning-based method [2, 4,

5] on the Real-world Test Dataset. Specifically, 36 par-

ticipants were involved in this user study. Regarding the

magnified effect, participants were asked, “Is the magni-

fied motion more intense in amplitude?” In terms of magni-

fied quality, participants were also asked, “Has the magni-

fied motion better visual perceptual quality?” Users were re-

quired to rate each method on a scale of 5 to 1 (“Excellent,”

“Good,” “Fair,” “Poor,” and “Bad”). Table A2 presents the

Mean Opinion Scores (MOS) for magnification effect and

quality. As the results show, our method significantly out-

performs SOTA methods, exhibiting more natural and high-

quality magnification.

4.2. Physical Accuracy Analysis

We conduct additional physical accuracy experiments, akin

to [4, 5], to evaluate the magnification accuracy with dif-

ferent methods, as depicted in Figure A3. In the video,
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Figure A3. Physical accuracy experiment for video motion
magnification based on physical signal measurements.
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Figure A4. Compatibility of our method for the temporal filter
on motion in different frequency bands. Taking the Fork video

as an example, the left and right forks vibrate at 56-72 Hz and

114-132 Hz, respectively. We select the low-frequency features in

different bands by using a temporal band-pass filter to amplify the

motion in the interested frequency bands.

subtle vertical vibrations were generated in a mechanical

rod of a universal vibration device. Using motion signals

recorded by ultrasonic sensors and cameras as input videos,

similar to [4, 5], motion signals were extracted from mag-

nified videos (magnification factor α = 20) for comparison

with ultrasonic sensor signals, computing the Mean Abso-

lute Error (MAE). Following the methodology of [5], tra-

ditional optical flow methods were employed to calculate

displacement signals from the videos, and both sensor mea-

surements and computed magnified signals were normal-

ized to a range of 0 to 1. The results of this experiment also

demonstrate that our proposed FD4MM exhibits the opti-

mal MAE value.

4.3. Compatibility with Temporal Filters

In this section, we discuss the compatibility issues between

our learning-based method and traditional temporal filters.

Inspired by [2], we first conduct frequency analysis on the

left and right forks in the Fork video to obtain the corre-

sponding motion frequency bands in Figure A4. Subse-

quently, to ensure compatibility with temporal filters, we

used the low-frequency features extracted from the obtained

consecutive frames as input for the temporal filter. As illus-

trated in Figure A4, we found that our FD4MM also accom-

modates the frequency band selection functionality of tem-

poral filters to amplify the desired motion, but still has the

inherent characteristic of smoothing the motion amplitude.
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