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1. Overview
In this supplementary material, we supplement signifi-
cant ingredients for our proposed G3-LQ (explicitly mod-
els Geometric-aware visual representations and Generates
fine-Grained Language-guided object Queries) framework
and provide more quantitative results and visualizations to
further verify the effectiveness of the G3-LQ approach in
3D visual grounding tasks. We introduce more implemen-
tation details (i.e., training details, framework details and
loss details) of our method in Section 2. In Section 3, we
present additional experiments, e.g., hyper-parameters se-
lection and ablation studies on the widely-used benchmarks
ScanRefer and Sr3D/Nr3D to better demonstrate the superi-
ority of the proposed G3-LQ method. In Section 4, we pro-
vide more visualization results in regard to the One-Stage
paradigm, Sr3D/Nr3D and failure cases of our method. Fi-
nally, we describes the limitation analysis and future im-
provement of our G3-LQ framework in Section 5.

2. Implementation Details
2.1. Datasets

ScanRefer. The ScanRefer benchmark [3], stands as a piv-
otal milestone in the realm of 3D visual grounding, which
is composed of 51,583 human-written utterances of 11,046
3D objects annotated across 800 ScanNet [5] indoor scenes.
In each scene, an average of 13.81 objects along with 64.48
descriptions are provided. Depending on whether the tar-
get object is a unique object class in the given scene, the
dataset can be categorically divided into the “Unique” and
the “Multiple” subset. Following prior works, we evaluate
the experimental results with the Acc@mIoU metric (Acc)
with the threshold m ∈ {0.25, 0.5}, which quantifies the
proportion of the predicted boxes whose Intersection over
Union (IoU) with the ground-truth (GT) boxes exceeds m.
Nr3D and Sr3D. The Nr3D and Sr3D [2] sub-datasets
within ReferIt3D contribute to the comprehensive under-
standing of 3D visual grounding. Both sub-datasets are built
upon ScanNet scenes, enriching the dataset with diverse
and representative real-world environments. Nr3D (Natural
Reference in 3D) provides 41,503 texts collected by Refer-
ItGame. SR3D (Natural Reference in 3D) includes 83,572
synthetic utterances based on a target-spatial relationship-
anchor template and utilizes spatial relation to localize a
referred object. Nr3D and Sr3D have different test sub-
sets: “Easy” and “Hard” splits align with the “Unique”
and the “Multiple”, while the “View-dependent” (VD) and

“View-independent” (VID) splits are discerned whether the
referring expression hinges upon the speaker’s viewpoint.
The evaluation metric of both datasets is the accuracy, i.e.,
whether the model correctly identifies the target object.

2.2. Additional Details

Training Details. The code is implemented on the Py-
Torch [14] platform equipped with 4 NVIDIA 12GB TI-
TAN Xp GPUs. We freeze the text backbone RoBERTa,
while keeping the rest of the network trainable. For the
ScanRefer dataset, we train our G3-LQ model with the
AdamW optimizer, which configs an initial learning rate
of 2 × 10−3 for the pre-trained PointNet++ [15] tokenizer,
2×10−4 for other layers, and the weight decay as 5×10−4.
Our model is optimized for 80 epochs and we utilize a learn-
ing rate decay strategy at epoch {50, 75} with a rate of 0.1.
For the Sr3D dataset, we train the network for around 60
epochs and the initial learning rate is set to 1 × 10−3 and
1× 10−4, which is reduced at epoch {30, 40} with a rate of
0.1. For the Nr3D dataset, which comprises complex free-
form descriptions, the proposed network is trained for about
180 epochs and the initial learning rate is set to 1 × 10−3

and 1× 10−4, declining at epoch 150 with a rate of 0.1.
Framework Details. For all the datasets, the xyz coor-
dinates and RGB values are the input into the overarching
network. We utilize PointNet++ [15] as point cloud tok-
enizer to perform set-abstraction and subsample points to
n=1024. Similar to EDA [20], the maximum length of text
tokens T is set to 256, and the absence bit of the position
label is padded with 0. In the two-stage paradigm of our
proposed G3-LQ framework, we utilize the information ob-
tained from the location and category of the detected boxes,
which are embedded separately and concatenated as the box
token B ∈ Rb×d. The number of channel dimensions d,
and candidate object embeddings, box tokens are empiri-
cally set to 288, 256 and 132, respectively. The Geometric
and Language Encoder with 3 layers, facilitate cross-modal
feature extraction and interaction, while the Geometric De-
coder equipped with 6 layers generates candidate object fea-
tures. Please refer to BUTD-DETR [10] for more details.
Loss Details. In addition to the Poincaré Semantic Align-
ment loss Lpsa introduced in the manuscript, we also adopt
the commonly-used object location loss Lloc, the KPS point
sampling loss Lpts [11] and the position-aligned loss Lpa
proposed in EDA [20]. Specifically, Lloc is composed of
Lbox and Liou. The former corresponds the L1 loss to regress
the position and size of the target object. The latter rep-



resents the 3D IoU loss between the predicted and ground
truth loss. Lpa aims to align the language-modulated visual
features consistent with the text descriptions. For more de-
tails of the parameters searching about Lpa, please refer to
EDA [20]. Finally, we optimize the proposed G3-LQ model
with the following total loss:

L = (α (Lpa + Lpsa) + Lloc) / (ND + 1) + 8Lpts (1)

where ND is the layer number of the multi-modal decoder.
As described in EDA, α exhibits distinct values depend-
ing on the significance in bounding box detection. Specifi-
cally, within the Sr3D/Nr3D dataset, α assumes a value of
1, while in the case of the ScanRefer dataset, it is set to 0.5.

3. Additional Experiments
Impact of Hyper-parameters. In this section, we under-
take a meticulous exploration of the 3D visual grounding
performance across a battery of hyper-parameter configura-
tions on ScanRefer and Nr3D/Sr3D datasets. Specifically,
we examine the influence of various hyper-parameters, in-
cluding the number of neighboring points denoted as k
within the PAGE module, the curvature parameter c, and
the temperature coefficient τ within the PSA loss function:

1) During the geometric feature extraction, the num-
ber of neighbor points k is of vital importance that deter-
mines the local structure and embedding scope of 3D point
cloud [18, 19]. As shown in Table 1, too many neighbors
lead to elevated computation burden and over-smoothing
of geometric features, thus declining the grounding perfor-
mance. Moreover, surplus neighboring nodes can introduce
redundant information, making it more challenging for our
G3-LQ model to discern critical geometric features, ulti-
mately diminishing the accuracy of 3D visual grounding.
On the other hand, too few neighbors cannot guarantee the
representative ability of the PAGE module to comprehend
the scene-level 3D semantics and object-level spatial rela-
tionships. A shortage of neighboring nodes can likewise re-
sult in an oversimplified representation of the point proxy,
impeding its capacity to encapsulate the intricate structures
within the 3D scene and consequently limiting the perfor-
mance of the visual grounding task. When k = 5, our G3-
LQ model achieves the best performance.

2) Table 2 shows the model performance depending on
the curvature c in the PSA loss. The curvature of the man-
ifold is a pivotal factor that exposes and provides insight
into the radius of the Poincaré ball [6, 13]. Intuitively, the
smaller c value making the Poincaré ball degrade to the Eu-
clidean space, aiding in understanding semantic relation-
ships in language descriptions. The bigger c value makes
the Poincaré space curved, shedding light on the geometric
structure and aiding in accurately capture the point cloud
shapes and spatial positions. Moreover, bigger c value ex-
hibits heightened sensitivity to geometric features, which

ScanRefer
Neighbor k

0.25 0.5
Sr3D(@0.25) Nr3D(@0.25)

3 56.48 44.39 72.59 56.37
5 56.90 45.58 73.10 56.97
8 56.15 44.23 72.08 55.76
10 55.87 44.16 71.30 55.29

Table 1. Experiments on the ScanRefer and Sr3D/Nr3D bench-
marks for different neighboring points number k of the point proxy
construction in PAGE module.

ScanRefer
Curvatures c

0.25 0.5
Sr3D(@0.25) Nr3D(@0.25)

0.05 55.94 44.08 70.38 55.22
0.10 56.90 45.58 73.10 56.97
0.15 56.24 44.39 72.75 55.61
0.20 54.93 42.66 69.94 54.56

Table 2. Experiments on the ScanRefer and Sr3D/Nr3D datasets
for different curvatures c of the hyperbolic space in the PSA loss.

ScanRefer
Temperature τ

0.25 0.5
Sr3D(@0.25) Nr3D(@0.25)

0.05 56.14 45.06 71.60 56.34
0.10 56.90 45.58 73.10 56.97
0.15 55.94 44.76 70.38 55.99
0.20 55.57 44.19 67.57 55.07

Table 3. Experiments on the ScanRefer and Sr3D/Nr3D bench-
marks for the temperature coefficients of multi-modal contrast
learning τ in the PSA loss.

encourages our G3-LQ model to adept at capturing subtle
geometric variations, such as minor object displacements,
discrepancy in angles, or intricate shape details. To strike
a balance, we opt for a curvature value of c=0.1, yielding
the optimal performance.

3) In Table 3, we conduct an in-depth investigation into
the effectiveness of the temperature coefficient τ within the
PSA loss. Given the intricate nature of 3D scenes and lan-
guage features, the choice of temperature coefficient τ will
exert a more significant impact on the performance of the
3D visual grounding task. Considering the complexity of
3D scenes which encompass diverse geometric information
and viewpoint variations, a higher τ help balance the simi-
larity between different geometric features, thereby enhanc-
ing the robustness of the contrastive loss. However, it may
also result in ambiguous similarity measurements, affect-
ing precise localization of the target. Conversely, a lower τ
may better capture fine-grained geometric information but
also increase the model’s sensitivity to 3D noise and dis-
turbed objects. Hence, we have opted for τ=0.1, achieving
higher performance while maintaining a balance between
these competing factors.



ID
Language Components Unique(%) Multiple(%)

Obj. Attri. Rel. 0.25 0.5 0.25 0.5

(a) — — — 86.75 69.76 50.11 38.58
(b) ✓ — — 86.89 70.47 50.25 38.87
(c) ✓ ✓ — 87.03 71.03 50.36 39.02
(d) ✓ — GCN 87.31 71.81 50.52 39.68
(e) ✓ ✓ GCN 87.66 72.16 50.87 40.05

Table 4. Ablation study of the language components effectiveness
in the Flan-QS module on the ScanRefer dataset.

Subsets Overall
Method

Attri Rel Attri+Rel @0.25 @0.5

ScanRefer [3] 11.17 10.53 10.29 10.51 55.22
TGNN [8] 10.52 13.32 11.35 11.64 56.97

InstanceRefer [22] 14.74 13.71 13.81 13.92 55.61
BUTD-DETR [10] 12.30 12.11 11.86 11.99 8.95

EDA [20] 25.40 25.82 26.96 26.50 21.20
G3-LQ 26.61 26.92 27.88 27.55 21.89

Table 5. Performance of grounding without object name proposed
by EDA [20]. The accuracy of subsets (attribution and relation-
ship) is measured by Acc@0.25IoU.

Unique Multiple Overall
Method

0.25 0.5 0.25 0.5 0.25 0.5

BUTD-DETR 85.62 68.64 46.07 35.51 52.0 40.5
EDA 90.91 75.33 51.71 40.66 57.6 45.8

G3-LQ 91.58 78.57 53.95 44.10 59.3 49.2

Table 6. Performance on the ScanRefer benchmark using ground
truth 3D boxes. The proposed method G3-LQ demonstrates no-
table advantages over other remarkable methods.

Method mAP@0.25 mAP@0.50

DETR+KPS+iter 59.9 —
3DETR with PointNet++ 61.7 —

BUTD-DETR 63.0 43.8
EDA 64.1 45.3

G3-LQ 66.8 47.4

Table 7. Performance of our proposed G3-LQ method on the 3D
object detection task (trained on the ScanRefer dataset).

Components of Language Scene Graph. As shown in
Table 4, we perform ablation analysis of the text compo-
nents in language scene graph construction on the ScanRe-
fer benchmark. (a) represents the proposed G3-LQ method
without the Flan-QS module and the PSA loss. Firstly,
the densely-aligned sub-methods (b) and (c) outperform the
vanilla setting in (a). It provides compelling evidence of
the effectiveness achieved by explicitly guiding query gen-

eration the query generation via decoupled language priors.
Moreover, comparison between (b) and (c) indicates that
attributions can identify the target object with additional
color, texture, and shape features, resulting in improved per-
formance. Secondly, when incorporating the relation com-
ponents (shown in (c) and (e)), we observe a remarkable
improvement of 1.13% (@0.5) and 1.03% (@0.5) on the
unique and multiple subsets. The relation-aware phrases up-
dated with the message passing mechanism, facilitate to un-
derstand the spatial layouts of 3D objects and encode long-
range dependencies, which further encourages to generate
precise object queries related to the descriptions.

Performance of grounding without object name. To eval-
uate the performance of our model, we conduct further ex-
periments on the ”Grounding without Object Name” setting
proposed by EDA [20]. In this setting, object names are
replaced with the generic term ”object” to test whether our
model can still accurately identify the referred object with-
out relying on the specific object names. The language set
is partitioned into four distinct subsets: only mentioning
object attributes (∼15%), only mentioning spatial relation-
ships (∼20%), mentioning both attributes and relationships
(∼63%), and others (∼2%). It is an challenging yet practi-
cal task since it more closely resembles real-world scenar-
ios where object labels may be missing or unreliable. The
experimental results presented in Table 5 demonstrate that
even without retraining, our method continues to outper-
form other state-of-the-art EDA in this setting, with 1.05%
and 1.69% improvements of the overall performance. It fur-
ther verifies the potential of our G3-LQ method in capturing
the intrinsic geometric properties of objects and complex
spatial relationships.

Evaluation on the ScanRefer with GT box. The Scan-
Refer dataset serves as an essential benchmark for eval-
uating models’ proficiency in comprehending natural lan-
guage instructions and accurately localizing objects within
3D scene. However, it is important to note that the Scan-
Refer dataset does not provide additional GT boxes for can-
didate objects. Similar to EDA [20], we provide evalua-
tion on the ScanRefer dataset by GT boxes for fair compar-
ison. As shown in Table 6, the performance of our G3-LQ
model demonstrates a remarkable improvement particularly
in the overall setting where the accuracy reaches 59.3% and
49.2%, respectively. To explain, GT bounding boxes pro-
vide precise information about the object’s location, per-
fectly matching the real-world position. This accuracy helps
avoid uncertainties introduced by errors in the object detec-
tion algorithm (e.g., GroupFree [11]). By directly using GT
bounding boxes for visual localization, the model can estab-
lish a more precise correspondence between textual descrip-
tions and objects. The impressive results achieved without
retraining underline the potential of our G3-LQ model to
significantly improve the efficiency and scalability of 3D



VG systems given more accurate object detection.
Detailed results on the Sr3D/Nr3D dataset. Regrettably
limited by the length constraints, we have exclusively show-
cased the experimental findings pertaining to the “overall”
and “Hard” subsets of the Nr3D and Sr3D datasets in the
manuscripts. While this provides valuable insight into the
performance of our approach, for a more comprehensive
analysis, a detailed comparison of our method with exist-
ing outstanding approaches spanning all subsets (i.e., easy,
hard, view-dependent, and view-independent) can be found
in Table. 8. Specifically, in the Nr3D dataset, descriptions
exhibit noteworthy intricacy (reference and spatial relation-
ships) and details (geometric attributes), inducing additional
challenges to 3D VG task. The experimental findings of
Nr3D dataset showcased in the Table. 8 demonstrate the su-
periority of our G3-LQ method in understanding complex
scenes and utterances understanding. To explain, our pro-
posed PAGE module contributes to distinguishing ambigu-
ous objects by effectively modeling the underlying geomet-
ric shape and unraveling the complex relationships between
vision-text features.
3D object detection performance on ScanNet. We ad-
here to the consistent experimental framework established
by BUTD-DETR [10] and EDA [20] for assessing the ef-
ficacy of 3D object detection within the ScanNet dataset.
Noteworthy, our proposed G3-LQ approach is not explic-
itly crafted for 3D object detection. The remarkable per-
formance shown in Table. 7 employs the identical model
as utilized in the 3D visual grounding task, which further
proves that our method enjoys high superiority. We analyze
from the following aspects: (1) Enriched visual represen-
tation. Our approach enriches the visual representation of
3D objects, thereby elevating the semantic understanding
of 3D scenes. Through the explicit integration of geomet-
ric features, our model achieves enhanced precision in de-
termining the spatial position and attributes of 3D objects,
resulting in a refined semantic comprehension of the target
entities. (2) Improved spatial understanding. The explicit
integration of geometric features in our method facilitates
a more precise localization and attribute estimation of ob-
jects. This, in turn, enhances the model’s ability to under-
stand the spatial relationships between objects, leading to
improved 3D object detection performance.

4. Qualitative Analysis

4.1. Visualization of Two-Stage Paradigm

The qualitative results of the 3D visual grounding task con-
ducted on the ScanRefer dataset are visually showcased in
Fig. 1, providing an intuitional depiction of the model’s ef-
fectiveness in accurately localizing and distinguishing ob-
jects within the intricate 3D indoor scenes.

1) Our method demonstrates exceptional visual percep-

tion, allowing for the accurate identification of objects
based on their geometric attributes (such as appearance,
size, and shape) among multiple candidates belonging to
the same class. This advancement is achieved through the
explicit exploration of the abundant topological structures
and geometric details present in 3D point clouds.

(2) The proposed G3-LQ method demonstrates outstand-
ing proficiency in complex spatial awareness, including rel-
ative distances, proximity, containment, and contact rela-
tionships. This is attributed to our proposed Poincare Se-
mantic Alignment (PSA) loss, which captures the nonlinear
mapping of visual-textual correlations in hyperbolic space
and models the correspondence between visual and textual
elements at different hierarchical levels.

4.2. Visualization of One-Stage Paradigm

In Fig. 2, we present a detailed visualization of the experi-
mental results on the ScanRefer [3] dataset for our method
and EDA [20] in the context of one-stage 3D visual ground-
ing setting. These visualizations provide compelling ev-
idence that our proposed G3-LQ exhibits superior perfor-
mance in localizing 3D objects, even without the assistance
of detected bounding boxes. The key factor contributing to
our method’s performance is the proposed PSA loss, which
effectively captures the complex nonlinear relationships be-
tween 3D scene and text descriptions. The PSA loss en-
ables a comprehensive alignment of these two modalities,
facilitating geometric-semantic consistency based solely on
text descriptions. Moreover, the Fine-grained Language-
guided Query Selection (Flan-QS) generates object propos-
als guided by fine-grained text priors, allowing our model
to align rich semantic information with the visual features
of the 3D scene in a more precise and granular manner.

4.3. Visualization on the Sr3D and Nr3D

The grounding results on the Sr3D and Nr3D datasets are
visualized in Fig. 3 and Fig. 4, respectively. We can ob-
serve the effectiveness of our G3-LQ approach in accurately
localizing objects based on simple and natural descriptions.
In the Sr3D dataset, the language descriptions are not only
concise but also contain many expressions related to relative
distances, such as “near”, “farthest”, “close to” and “next
to” (see Fig. 3). Our G3-LQ approach addresses the chal-
lenge by leveraging PAGE module to capture fine-grained
spatial details and relationships between objects. Addition-
ally, the Nr3D dataset provides more natural language de-
scriptions for the localization of 3D objects, including de-
scriptions of their relative sizes (e.g., largest), heights(e.g.,
higher), and ambiguous orientations (e.g., above, beside,
closest). Fig. 4 visually demonstrates the effectiveness of
our approach in handling these challenging text descrip-
tions. However, the existing EDA falls short in explicitly
incorporating the geometric properties and spatial relation-



there is a set of bottom kitchen 
cabinets in the room. it has a 
microwave in the middle of it.

there is a beige wooden desk. 
placed on the side of the wall.

this is a table with wooden sides and a 
green top. it is behind 2 pairs of shoes, to 

the left of the desk, and in front of the wall.

in the far left corner, above the sink 
and hanging on the left wall, is a 

paper towel dispenser. a door, placed 
in the same wall, is just before it.

the table is right of the copier 
machine. the table is a brown square. 

this table is brown. it is hard.

there is a square brown armchair. it 
is the one directly right of the door. it 

is farthest to the picture frame.

there is a wooden brown 
chair. it is next to a gray 

chair and at a circular table.

a chair sits alone in the middle 
of the floor. it's got it's back to us 

and it's facing a white table.

the printer is atop the right side of 
the cabinet. it is mostly white, but 
has a blue piece on the top of it.

there is a square olive chair. it is 
between a cabinet and a table.

the white door is beige. it is 
to the left of the trash can. it 

is to the left of the towels.

the white dishwasher is near 
the stove. the dishwasher is to 
the left side of the sink area.

there is a rectangular mini fridge. it 
is on the floor next to a dresser.

there is a rectangular window. it is the 
second leftmost window on the wall.

the chair is to the right of one 
chair, and to the left of another. 
the window is behind the chair.

this is a wooden chair. it is 
against the wall by the windows. it 

is third from the left side.

the object is a brown chair. it is in 
front of the bookshelf and black 
filing cabinet against the wall.

the white fan is in the center of the 
room, to the right of the grey chair. 
it is to the left of the grey cabinet.

the coffee table is between a caramel 
armchair and a square seat. the coffee table 

is dark brown and square shaped.

the chair is the northern-most 
one on the right of the table. the 
chair is grey and has armrests.

this is a bathroom door with 
clothes and towels hanging from 

it. it is in the bathroom and to 
the left of the shower

the chair is black and in the 
corner. the chair left of the others.

it is a black office chair. the black 
office chair is the forth office chair 

on the left side of the table.

the end table is the closest 
one to the window. the end 
table is a round cylinder.

Figure 1. Additional visual experimental results on the ScanRefer dataset. The green bounding boxes denote the ground truth annotations,
the red ones represent the grounding results obtained by EDA [20], and the yellow boxes indicate the localization results of our G3-LQ
method. Our results showcase outstanding performance.



Nr3D Sr3DMethod Venue Overall Easy Hard VD VID Overall Easy Hard VD VID

TGNN [8] AAAI21 37.3 44.2 30.6 35.8 38.0 45.0 48.5 36.9 45.8 45.0
InstanceRefer [22] ICCV21 38.8 46.0 31.8 34.5 41.9 48.0 51.1 40.5 45.4 48.1

3DVG [23] ICCV21 40.8 48.5 34.8 34.8 43.7 51.4 54.2 44.9 44.6 51.7
LanguageRefer [17] CoRL21 43.9 51.0 36.6 41.7 45.0 56.0 58.9 49.3 49.2 56.3
TransRefer3D [7] MM21 48.0 56.7 39.6 42.5 50.7 57.4 60.5 50.2 49.9 57.7

SAT [21] ICCV21 49.2 56.3 42.4 46.9 50.4 57.9 61.2 50.0 49.2 58.3
LAR [4] NeurlPS22 48.9 58.4 42.3 47.4 52.1 59.4 63.0 51.2 50.0 59.1

3DRef [1] WACV22 47.0 50.7 38.3 44.3 47.1 39.0 46.4 32.0 34.7 41.2
3D-SPS [12] CVPR22 51.5 58.2 45.1 48.0 53.2 62.6 56.2 65.4 49.2 63.2

MVT [9] CVPR22 55.1 61.3 49.1 54.3 55.4 64.5 66.9 58.8 58.4 64.7
BUTD-DETR [10] ECCV22 54.6 60.7 48.4 46.0 58.0 67.0 68.6 63.2 53.0 67.6

EDA [20] CVPR23 52.1 58.2 46.1 50.2 53.1 68.1 70.3 62.9 54.1 68.7
3D-VisTA(Scratch) [24] ICCV23 57.5 65.9 49.4 53.7 59.4 69.6 72.1 63.6 57.9 70.1

G3-LQ (Ours) — 57.8 62.0 50.7 53.8 57.1 73.1 74.7 66.3 57.2 74.0

Table 8. Performance on SR3D/NR3D datasets by Acc@0.25IoU as the metric. We have highlighted the top-performing three methods in
red (best viewed in colors). Our G3-LQ method showcases an admirable performance compared with most prevailing methods.

the stools is to the left of the 
bed . the stools is arched and 

has two steps .

this chair is sixth from the wall 
on the right. there is a table in 

front of it.

the chair is the color black . 
it is facing the table along 

with other objects . 

there is a picture hanging on 
the wall above the toilet . it is 

to the right of the bathtub .

this table is in between the 
couch and chair . there is a 

lamp on it . it is square .

the messy purple bed is against 
the wall under the window . it is 

a twin size mattress .

the white open door leads into 
the bathroom . it is across from 

some bathroom cabinets .

the door is to the east of the 
red bed . the object is white 

and rectangular .

the black trashcan is to the left 
of the large printer . it is directly 

to the right of the cabinets .

there is a rectangular whiteboard . 
it is over a row of chairs . it is 

above chairs on the wall .

there is a rectangular trash can . 
it is at the end of a row of chairs . 

this is a gray object .

there is a red curtain . it is 
near the corner of the room 

and next to the mirror .

Figure 2. Illustration of the One-Stage grounding results of our proposed G3-LQ framework on the ScanRefer [3] dataset. The green
marks are the Ground Truth boxes and the red marks denote the grounding results of the SOTA EDA [20] method, while the yellow marks
represent the detected boxes of our method.

ships inherent in 3D objects. Consequently, it fails to cap-
ture the intricate details essential for achieving precise 3D
visual grounding.

4.4. Visualization of Failure Cases

While our method has achieved state-of-the-art perfor-
mance, it is important to acknowledge that there are still



the rail that is far away from 
the mirror

facing the front of the couch, 
choose the table that is on 

the right of it

select the window that is 
close to the trash can

select the backpack that 
is on the top

choose the monitor that is 
close to the door

the trash can that is farthest 
from the kitchen counter

select the box that is 
close to the table

select the cabinets that are far 
away from the door

find the toilet paper that is 
far away from the shelf

choose the chair that is near 
the computer tower

choose the couch that is far 
from the computer tower

choose the shelf that is 
next to the laptop

Figure 3. Qualitative results of the EDA [20] and our proposed G3-LQ on the Sr3D dataset. The green marks are the ground truth boxes.
The yellow and the red marks denote the grounding results of our G3-LQ methods and EDA method.

a significant number of instances where failures occur. One
aspect that we have identified as contributing to the failure
occurrences is the low precision in detecting both large
and small objects. This issue stems from the performance
limitations of the 3D object detector used in our method. To
address this limitation, we are exploring alternative detec-
tion frameworks [11, 16] and evaluating their effectiveness
in enhancing the accuracy and robustness of our method.
Another factor that may contribute to our model’s failure in
certain scenarios is the lack of consideration of multi-scale
point cloud visual representations, which enables to capture
the full range of spatial context and details. The problem of
ambiguous language descriptions is a significant challenge
for 3D visual grounding, as it can lead to poor understand-
ing of the semantic content of text and imprecise localiza-
tion of referring objects. This challenge is particularly pro-
nounced in situations where there are multiple similar ob-
jects, object occlusions, or cluttered scenes.

5. Limitation and Future Study
Limitation. In this paper, we propose a G3-LQ framework
that explicitly models Geometric-aware visual representa-
tions and Generates fine-Grained Language-guided object
Queries. While this approach has demonstrated promising

experimental performance in indoor 3D scenes, its effec-
tiveness have underexplored in complex outdoor environ-
ments (e.g., robot navigation and autonomous driving) as
well as multi-view scenarios. Furthermore, as our G3-LQ
method predominantly focuses on individual object ground-
ing, its performance is balanced on a knife-edge when con-
fronted with scenarios involving multiple objects referenced
within the text descriptions. Finally, the proposed G3-LQ
approach is dedicated to the 3D visual grounding task cen-
tered around point cloud modeling, and it does not venture
into the exploration of 3D visual grounding tasks that rely
on volumetric or multi-view image representations.

Future Study. In the future, there are still significant prob-
lems worthy to be explored. Among this, future research on
building larger, more diverse, and complex benchmarks to
comprehensively explore the performance and generaliza-
tion capabilities of 3D VG models is desperately in need.
Such datasets should encompass a variety of data types,
including point clouds, voxels, multi-view images, fine-
grained textual information. Based on datasets, our aspira-
tion is to develop a all-encompassing 3D multi-modal large
model that can accommodate a wide range of 3D vision-
language tasks. This endeavor is envisioned to make a sub-
stantial contribution to the broader research community.



The table closest to the door. Choose the bookcase on the far left.

The box ottoman that is near the 
middle table

the higher whiteboard

The kitchen cabinets that are 
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The window you want is to the 
left of these shelves.

The largest of the bookshelves

choose the bag right next to 
the door

the bed beside heater

The chair next to the bed 
on the left hand side

the black backpack on the 
right side of the head of the 

bed on the floor

The door that goes into the 
bathroom

Figure 4. Qualitative results of the EDA [20] and our proposed G3-LQ on the Nr3D dataset. The green marks are the ground truth boxes.
The yellow and the red marks denote the grounding results of our G3-LQ methods and EDA method.

the green instrument case 
has a gray rolled up sleeping 

bag in front of it. 
there is a rectangular black monitor. 

it is on the table against the wall.
this chair is dark. it is facing to 
the right and is on the left side.

it is a computer monitor. it is 
black in color. it is sitting in the 

floor beside a metal desk.

the object is a chair. it is the chair 
that is opposite the side of the 

table that is against the window.

the object is a shelf. this is a 
gray wooden shelf. on the 

side of the wall.

this is a black filing cabinet. 
it is on the floor on the left of 

the wooden desk.

the whiteboard is above the two 
trash cans. the whiteboard is 

white and rectangular.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Illustration of the failure cases of our proposed G3-LQ framework on the ScanRefer [3] dataset. The green marks are the Ground
Truth boxes and the red marks denote the grounding results of our G3-LQ methods
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