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1. Network Architecture

The detailed structure of our method is shown in Fig. 1.
Our network has a fully-connected network architecture. By
default, we set the hidden size h of all layers as 768, which
is the size of the concatenation of local encoding (512) and
global encoding (256).

In the beginning, the network takes as input the concate-
nation of local encoding and global encoding, and trans-
forms it with a residual block which has 3 fully-connected
layers. Then N residual blocks with 3 fully-connected lay-
ers are sequentially applied, where we choose N based on
the scene scale. Specifically, we set N = 1 for all in-
door scenes, and N = 2 for Cambridge Landmarks [4].
For Aachen Day [6, 7] dataset, we set N = 3 and dou-
ble the hidden size h, i.e. 1536, for the second layer of
each residual block. In addition, for evaluation of Aachen
Day [6, 7] dataset with additional SuperPoint [3] feature,
we set N = 2 and do not double the hidden size h in order
to maintain a similar map size. Finally, we apply 3 fully-
connected layers to get k logits {si}, one for each cluster
center, and one homogeneous coordinate with parameters
ḋ, ŵ to define an offset. The final 3D coordinate ŷ is esti-
mated with Eq. 8 in the main paper.

To get the k cluster centers from training data, we clus-
ter training camera positions with K-Means++ [1]. We set
k = 50 for scenes that have a more multimodal distribution,
including integrated rooms and Aachen Day dataset [6, 7],
and k = 1 for scenes that have a more unimodal distri-
bution, including individual scenes in the 7 Scenes [8], 12
Scenes [10] and Cambridge Landmarks [4].

2. Experiment Details

Following [2], we allocate a training buffer on the GPU,
which stores local encodings and corresponding meta-
data, i.e. image indices and ground truth poses. This buffer
is filled by iterating over the training images. Each image
is first converted to grayscale and then subjected to a se-

*Equal contribution.

Scene Number of GPUs Mapping Time

7 / 12 Scenes [8, 10] 1 6 min
Cambridge [4] 4 20 min
i12 / i19 8 1 h 50 min
Aachen Day [6, 7] 8 2 h 30 min

Table 1. Mapping Times of our method on different scenes. We
use Nvidia Quadro RTX 6000 GPUs in experiments.

ries of data augmentations: random scaling between 2
3 and

3
2 , brightness and contrast jitter by 10%, and random rota-
tions up to a maximum of 15◦. From each augmented im-
age, we extract and uniformly sample 1024 local encodings.
For the version using SuperPoint [3], importance sampling
based on corner detection probability is employed instead.
We also continuously update the training buffer during each
training iteration when the number of training images is
large.

Global features for each training image are extracted
without any data augmentation and stored in a lookup ta-
ble to avoid unnecessary duplication. During each training
iteration, a batch of local encodings is randomly selected
from the training buffer. Corresponding global encodings
are then retrieved based on the image index. For these
global encodings, we add Gaussian noise with a standard
deviation of σ = m = 0.1, where m is the margin used in
the triplet margin loss by the global feature extractor [11].
Subsequently, the global encodings are normalized back to
the unit sphere.

We use AdamW [5] optimizer with a One Cycle learning
rate scheduler [9] that increases the learning rate from 2 ·
10−4 to 5 ·10−3 and then decreases to 2 ·10−8. The detailed
mapping times and number of GPUs for training is shown
in Tab. 1.

During evaluation, we use a 10px inlier threshold and
64 RANSAC hypotheses for all experiments, except that
we use 3200 RANSAC hypotheses for Aachen Day [6, 7]
dataset to match the number of RANSAC hypotheses of the
ACE [2] × 50 baseline.
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Figure 1. Detailed structure of our fully-connected network architecture for GLACE. In the beginning, a residual block (blue) transforms
the concatenation of global and local encodings, which is followed by N sequential residual blocks (orange). Finally, three fully-connected
layers (pink) are applied to get the k logits and offset for estimating the 3D position.
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Figure 2. Comparison about mean absolute error of pixel location
prediction in our 2D toy example.

3. Position Decoding in 2D Toy Example
We designed a simplified 2D toy example to show the ef-
fect of our position decoder. We randomly select 19 images
from the 7 Scenes [8] and 12 Scenes [10] datasets and place
them in a grid with a similar layout as the i19 scene. The
images are resized and cropped to a size of 480 x 640 for
convenient batch processing. We use the same pretrained
ACE [2] encoder and train the MLP head with similar archi-
tecture, except that the output coordinate is now 2D instead
of 3D. We use 19 decoder cluster centers, which are actually
the centers of the 19 images. The output coordinate is di-
rectly supervised by the ground truth pixel location. Fig. 2
shows that, even for this simple example with strong super-
vision, our position decoder can allow the model to fit the
training data with a multi-modal output distribution better.

4. Reconstruction Visualization
In Fig. 3, 4 and 5, we visualize the implicit reconstructions
by accumulating the predicted 3D scene coordinates of the
training images, and filter the outliers according to a 5px
reprojection error threshold. The point cloud color is ob-
tained from the center pixel of each image patch. As we
can see, the implicit triangulation allows the model to learn
meaningful 3D structures from reprojection loss only.
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Figure 3. Reconstructions of integrated rooms.
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Figure 4. Reconstructions of Cambridge Landmarks [4].

Figure 5. Reconstrucion of Aachen Day dataset [6, 7].
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