
GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation,
Demonstration, and Imitation Supplementary Material

The supplementary material offers additional details on
various aspects of the method and experiments. Refer to
the table of contents below for an overview. Section A pro-
vides additional details and clarifications on our methods.
Sections B and C present supplementary experiments on
baselines, along with additional quantitative and qualitative
results in the simulation and real-world scenarios, respec-
tively. Section D discusses the limitations of our work and
explores potential research directions for future human-to-
robot handovers and human-robot interactions.

Contents

A. More Method Details 12
A.1. GenH2R-Sim 12
A.2. Generating Demonstrations for Distillation . 12
A.3. Forecast-Aided 4D Imitation Learning 13

B. Simulation Experiments Details 14
B.1. Discussions on the Simultaneous Setting . . 14
B.2. Baseline Experiments 15
B.3. More Ablations 15
B.4. Evaluating on Demonstration Generation . . 15
B.5. Training Details 16

C. Real World Experiments Details 16
C.1. Setup . 16
C.2. User Study 16
C.3. Generalization Study 17

D. Limitations and Future Work 18

A. More Method Details
A.1. GenH2R-Sim

In this section, we provide details on the generation of hand-
object moving trajectories and our simulator GenH2R-Sim.

A.1.1 Hand-Object Moving Trajectory Generation

Note: The unit for all positions in the following paragraphs
is meters.

In HandoverSim [9] and GenH2R-Sim, the robot arm’s
base is located at (0.61,−0.50, 0.875), and the center of the
table surface is at (0.61, 0.28, H = 0.92). To synthesize a
hand-object moving trajectory, we start by generating the
object’s trajectory.

For the translation part, we uniformly sample a starting
point from the starting region [0.3, 0.9] × [0, 0.2] × [H +
0.1, H + 0.3]. Subsequently, we sample several endpoints

from the activity region [0.1, 1.1] × [−0.3, 0.1] × [H +
0.1, H+0.7] and employ Bézier curves to connect the start-
ing point and the endpoints. For each Bézier curve, a key
point is sampled from a Gaussian distribution centered at
the midpoint with a standard variation of 0.2, and the trans-
lation speed along this curve is uniformly sampled from
[0.1, 0.2] m s−1.

For the rotation part, we uniformly sample a rotation
R ∈ SO(3) as the starting object orientation. When the ob-
ject travels along a Bézier curve, we rotate the object about a
random rotation axis with an angular speed uniformly sam-
pled from [0.5, 1] rad s−1.

After generating the object trajectory ξ =
(T0, T1, · · · , TT−1), we correspondingly generate the
hand pose trajectory ς = ξ ◦T hand

object, where T hand
object is the hand

pose in the object reference frame.

A.1.2 More Details about GenH2R-Sim

In real-world handovers, in order to enhance stability, our
motion typically stops when another person’s hand is close
to the object. We incorporate this characteristic into our
simulator, making it reactive to the robot arm’s motion. To
be specific, suppose p ∈ R3 is the current position of the
gripper’s tip, and Q ⊂ R3 is the current object point cloud.
If minq∈Q ∥p − q∥ ≤ 0.1, the hand and object will stop
moving, awaiting the robot arm to grasp the object. We be-
lieve that this modification makes the cooperative handover
process more realistic, transforming it from a simple chase-
and-grasp game into a more authentic interaction.

It is important to note that we apply this modification ex-
clusively in our simulation environment, GenH2R-Sim, for
the benchmarks “t0” and “t1”. We refrain from modifying
it in HandoverSim [9] for the benchmark “s0” to ensure a
fair comparison with the exact results obtained by baseline
methods.

A.2. Generating Demonstrations for Distillation

A.2.1 Clarification of Different Methods

We would like to provide further clarification regarding the
terms used to describe various demonstration generation
methods, as outlined in Table 3 of the manuscript. These
terms include destination planning, dense planning, and
landmark planning.

Destination planning refers to the foresighted planner
discussed in Section 3.3, which plans directly to the object’s
destination at the beginning. While the generated demon-
strations exhibit smoothness, they lack vision-action corre-
lation in complex scenarios and are not distillation-friendly.

• Input observations, ground truth actions and
poses are sampled from demonstrations.

• Flow information (transformation matrices)
is calculated by ICP algorithm.

• Final loss function:

Input: Egocentric
point cloud

Egocentric observations in previous frames

.....
t-3 t-2 t-1

t-3 t-2 t-1 t

t+1 t+2 t+3

PointNet++ ...

Output 1:
6D egocentric action

Output 2:
 Future pose prediction

��
�−1��

�−2

��
�−�

�

��
�−3� ��

�−2� ��
�−1� �

��
�+3��

�+2��
�+1

ℒ�c����

ℒ����

ℒ = ℒ�c���� +�ℒ����

��
�−3

Estimated past frames

�

Figure 5. Forecast-Aided 4D Imitation Learning Pipeline. The network receives egocentric point cloud input and produces egocentric
6D actions as output. For each input point, we compute its past coordinates using flow information obtained through the Iterative Closest
Point algorithm. Subsequently, we employ PointNet++ to encode the processed point cloud into a low-dimensional global feature. The
policy head decodes this feature into a 6D egocentric action, serving as the primary policy output. Simultaneously, the prediction head
decodes the feature into future pose transformations, contributing to the auxiliary loss.

Dense planning represents the special case of our
method, where the planner plans at each time step based on
the current object position. Although the generated demon-
strations ensure a strong vision-action correlation, they suf-
fer from the zigzag issue, resulting in slower performance.

Landmark planning denotes our method, where the
planner periodically plans based on the object’s position at
future landmarks.

A.2.2 Trajectory Resampling Strategy

In this section, we introduce another resampling strategy
designed to enhance the vision-action correlation in expert
demonstrations.

Upon successfully solving the Inverse Kinematics (IK)
to achieve the 6D target grasping pose, the subsequent task
involves generating a trajectory from the initial 7D joint
configuration C to the destination 7D joint configuration
D. Through optimization, OMG-Planner [42] produces a
trajectory C0 = C,C1, · · · , CN−1, CN = D with fixed
time steps N . However, a challenge arises as the step size
of the expert action is influenced by the distance between
the initial end effector pose and the target grasping pose.
Specifically, if the target grasping pose is far away from the
initial end effector pose, the expert will move faster; con-
versely, if the target grasping pose is close to the initial end

effector pose, the expert will move slower. This variability
in step size can potentially confuse the vision-based model,
which lacks awareness of the initial end effector pose and
struggles to discern the expert’s speed.

To address this issue, we conduct a resampling process
to refine the obtained trajectory. Let si =

∑i
j=1 ∥Cj −

Cj−1∥ represent the accumulated step length, and L
denote the hyperparameter controlling the desired step
length. The resampled trajectory, denoted as C ′

0 =
C0, C

′
1, · · · , C ′

M−1, C
′
M = CN , where (M − 1)L < sN ≤

ML, and for each 1 ≤ i ≤ M−1, suppose sj ≤ iL ≤ sj+1,
then

C ′
i =

sj+1 − iL

sj+1 − sj
Cj +

iL− sj
sj+1 − sj

Cj+1. (3)

The resampling ensures that, regardless of the proximity
between the initial end effector pose and the target grasp-
ing pose, the resulting trajectory maintains a consistent step
length. This characteristic makes the expert demonstrations
more conducive to distillation for vision-based models.

A.3. Forecast-Aided 4D Imitation Learning

Figure 5 provides an overview of our Forecast-Aided
4D Imitation Learning process. Similar to Handover-
Sim2real [11], We initiate the pipeline by obtaining an ego-

s0 (Sequential) s0 (Simultaneous) t0 t1
S T AS S T AS S T AS S T AS

OMG Planner† [42] 62.50 8.31 22.5 - - - - - - - - -

s0

GA-DDPG [43] 50.00 7.14 22.5 36.81 4.66 23.6 23.59 7.31 10.3 46.7 5.50 26.9

train on
Handover-Sim2real [11] 75.23 7.74 30.4 68.75 6.23 35.8 29.17 6.29 15.0 52.40 7.09 23.8

Handover-Sim2real* [11] 64.35 7.61 26.7 25.69 5.43 15.0 28.56 4.73 17.9 30.60 5.98 16.5
Destination Planning 74.31 9.01 22.8 76.16 6.98 35.2 25.68 5.96 14.1 48.4 8.94 15.1

Dense Planning 74.77 9.54 19.8 75.45 7.32 33.0 27.30 6.26 14.1 52.3 9.24 15.1
Landmark Planning 77.78 9.24 22.3 79.17 7.26 34.9 29.63 6.23 15.4 54.2 9.02 16.6

t0

GA-DDPG [43] 54.76 7.26 24.2 44.68 5.30 26.5 24.05 4.70 15.3 25.50 5.86 14.1

train on
Handover-Sim2real [11] 65.97 7.18 29.5 62.50 6.04 33.5 33.71 5.91 18.4 47.10 6.35 24.1

Handover-Sim2real* [11] 63.55 7.58 26.5 38.89 5.29 23.1 33.31 4.64 21.4 33.35 5.81 18.4
Destination Planning 0.93 12.80 0.01 6.48 12.41 0.3 5.96 8.81 1.9 1.60 12.03 0.1

Dense Planning 81.48 9.51 21.9 84.95 7.45 36.3 38.04 7.16 17.1 57.90 8.85 18.4
Landmark Planning 86.57 8.81 28.0 85.65 6.58 42.8 41.43 6.01 22.3 68.33 7.70 27.9

Table 4. Evaluating on different benchmarks. We compare our method against baselines from the test set of HandoverSim [9] benchmark
(“s0 (sequential)” and “s0 (simultaneous)”) and our GenH2R-Sim benchmark (“t0” and “t1”). We use the best-pretrained models from the
repositories of GA-DDPG [43] and Handover-Sim2real [11] for evaluation. The results for our method are averaged across 3 random
seeds. Note that S means success rate(%). T means time(s). AS means average success(%) as defined in Equation 2. †: This method [42]
is evaluated with ground-truth states and cannot handle dynamic handover like “s0 (Simultaneous)”, “t0” and “t1”.*: We reproduce the
results of HandoverSim2real in the true simultaneous setting as detailed in Section 4.1 to make a fair comparison.

centric hand and object point cloud from the simulator, to-
gether with the one-hot encoding for hand/object labels. We
augment the feature of each point with its 3D coordinates in
the past n time steps, computed from the estimated flow in-
formation and the current 3D coordinates. As a result, each
point has a feature vector of length 3 + 2 + 3 · n.

We then introduce the specific method for computing
flow information. Given the end effector pose, we convert
the point cloud from the egocentric frame to the static world
frame and store it in a buffer. In each time step, we retrieve
the point clouds of several past time steps and leverage the
Iterative Closest Point (ICP) registration algorithm [37] to
estimate transformation matrices between the current point
cloud and past point clouds in the world frame. While these
transformations may be slightly imprecise due to the in-
complete point cloud input, they can provide sufficient flow
information for each point. Finally, the flow information
is converted back to the current egocentric frame, which
serves as an important part of our feature representation.

Then we feed the point cloud with processed features
into PointNet++ [35] to obtain a global low-dimensional
representation. This representation is then decoded by two
heads: the policy head and the prediction head. The policy
head decodes it into a 6D egocentric action, and Laction is
computed following the approach defined in [27]. Simul-
taneously, the prediction head decodes the representation
into transformations between the current and future object
poses, with Lpred computed as a motion prediction loss.

Similar to Handover-Sim2real [11], our policy only out-
puts 6D egocentric actions in a closed loop. For decisions
on whether to grasp the object and place it in the target loca-

tion, we adopt a heuristic method akin to GA-DDPG [43].
Specifically, if the number of points in the gripper’s vicinity
exceeds a predefined threshold, the robot attempts to grasp
the object and retract to the target location in an open-loop
fashion, foregoing the execution of the egocentric actions
predicted by the policy network.

B. Simulation Experiments Details

B.1. Discussions on the Simultaneous Setting

It’s essential to clarify that in handoverSim [9] and
Handover-Sim2real [11], the simultaneous setting (also re-
ferred to as “w/o hold”) implies that the robot is allowed
to move from the beginning of the episode. We adhere to
this definition in our GenH2R-Sim and our methods. In
the settings “s0 (Simultaneous)”, “t0”, and “t1”, the robot
initiates movement immediately upon detecting the object.

However, we observed that in the code of Handover-
Sim2real, a parameter named “TIME WAIT” is used
to specify the time to wait before executing the ac-
tual action in different settings. In “s0 (Sequential)”,
“TIME WAIT” is set to 3s (matching the 3-second dura-
tion of DexYCB [8] handover motion), but in “s0 (Simul-
taneous)”, “TIME WAIT” is set to 1.5s, which implies a
1.5s wait for the simultaneous setting. We believe this value
should be 0s for the simultaneous setting.

The author adjusted this parameter after observing that
humans typically move faster than the robot. This modifi-
cation aims to prevent collisions, especially when the robot
approaches the human while the human is also approaching
the object. The change is implemented to reduce the num-

ber of failures caused by attempting to grasp while the hu-
man is still in motion or before the human completes pick-
ing up the object from the table.

We believe that improving performance makes sense, but
we consider the true simultaneous setting to be closer to
real-world scenarios. It’s crucial not to make the person
wait for an extended period during a short-term handover
process, so we avoid adjusting the waiting time manually.

For a fair comparison, we reproduce the results in the
true simultaneous setting.

As highlighted in the blue rows of Table 4, our method
demonstrates significant improvements. When trained
on “s0”, our method achieves improvements of 13.43%,
53.48%, 1.07%, and 23.6% in the successful rate of “s0 (Se-
quential)”, “s0 (Simultaneous)”, “t0”, and “t1” settings, re-
spectively. When trained on “t0”, our method achieves im-
provements of 23.02%, 46.76%, 8.12%, and 34.98% across
the four test sets. Notably, our method excels in the simul-
taneous setting when hands are in motion. This highlights
that our distillation-friendly demonstrations can better ex-
tract valuable insights from more complex scenarios and
showcase enhanced generalizability compared to the base-
line.

B.2. Baseline Experiments

When training Handover-Sim2real, we follow the two-stage
teacher-student training approach outlined in the paper. In
the pretraining stage, the duration of hand and object move-
ment is clipped to 3 seconds, and the expert waits for 3 sec-
onds before planning to grasp the static object. In the fine-
tuning stage, the entire movement is used. In the original
codebase, the robot waits 1.5 seconds. In our reproduced
version, the robot does not need to wait, moving directly
with the dynamic hand and object.

B.3. More Ablations

We conducted additional ablations for our method, as
shown in Table 5. All these methods are trained in “t0”
and tested in “t0”.

In Section 3.4 of the manuscript, we mentioned that
frame stacking is a straightforward approach but struggles
to capture both motion and geometry effectively. To quan-
titatively demonstrate this, we compared it with our method
based on forecast-aided 4D imitation learning and found
a 5.26% decrease in the success rate. This highlights the
effectiveness of our method in learning from 4D spatial-
temporal information.

Moreover, excluding the endpoints from consideration
when selecting the landmark results in a 1.70% decrease in
the success rate. This indicates the importance of incorpo-
rating the endpoints when choosing the landmark state.

Methods S T AS
w/o Flow 31.66 5.67 17.9

w/o Prediction 39.18 6.11 20.7
w/o Flow & Prediction 37.04 5.93 20.1

w/o Endpoints 39.73 5.90 21.7
Frame Stacking 35.17 5.82 19.4

Ours 41.43 6.01 22.3

Table 5. Ablations on different modules. “w/o Flow” means not
using flow information in the input. “w/o Prediction” means not
adding prediction loss in the final loss.

Figure 6. Comaprison of different expert demonstrations.

B.4. Evaluating on Demonstration Generation

Figure 6 compares different expert demonstration gener-
ation variants by showing their accumulated success rate
w.r.t. to success time on “t0”.

Destination Planning is suboptimal, as it plans a straight
trajectory directly to the destination, which is not only slow
but also nearly impossible to be distilled to vision-based
agents when the object trajectory is complex.

With access to future object states and with less frequent
replanning periods, Landmark Planning exhibits a larger
success rate and faster success time compared with Dense
Planning. To ablate the two factors, we also analyze two
additional settings. In Dense Planning with Foreseeing,
OMG-Planner still always replans at each step, but based on
the future object states. In sparse Planning, OMG-Planner
replans with the same sparsity as Landmark Planning, but
it can only plan based on the current object state. We can
analyze from the curves that both decreasing the replanning
period and foreseeing future states can help the expert to
achieve a higher success rate and lower success time.

Figure 7. Real-world Handover System Setup. Our system con-
sists of an xMate 3 robot, which is similar to a Franka Panda robot,
and two RealSense Depth Camera D435 devices.

B.5. Training Details

In our training process, we employ a single Nvidia GeForce
RTX 3090 (24GB) with a batch size of 256. The train-
ing spans 80,000 iterations, with each iteration involving
the random sampling of 256 observation-action pairs from
demonstrations. We use the Adam optimizer with a learning
rate of 0.001 and weight decay of 0.0001. The entire pro-
cess takes approximately 8 hours to train our method. We
incorporate flow information from the last 3 time steps and
calculate the prediction loss for the next 3 time steps with
the weighting hyper-parameter λ as 0.1.

C. Real World Experiments Details
C.1. Setup

In our real-world handover system, illustrated in Figure 7,
we utilize a ROKAE xMate 3 ER series flexible collabo-
rative robot along with two Intel RealSense Depth Camera
D435 devices.

Since the action space is 6D Cartesian, while our poli-
cies and the baselines are trained with Franka Panda robot
in HandoverSim [9] and GenH2R-Sim, we can deploy them
to the xMate3 robot despite their morphology difference, as
they have own position controllers. Thus, our real-world
experiments not only assess the policy’s generalization for
sim-to-real transfer but also evaluate its adaptability to dif-
ferent robots.

Our real-world handover system incorporates two Intel
RealSense Depth Camera D435 devices to enhance the ego-
centric point cloud. In Figure 7, the higher camera captures
the point cloud in proximity to the robot gripper but lacks
visibility further ahead. Conversely, the lower camera cap-
tures the point cloud ahead of the robotic arm but misses
details near the gripper. By merging the point clouds from

Figure 8. Various objects for real-world handover. The image
above displays relatively simple objects for handover, such as the
can, the box, the bottle, or some square objects. In contrast, the
image below showcases more challenging objects for handover,
including the plastic stool, the teapot, the sticky tape, or some soft
objects with diverse shapes.

both cameras, we achieve a comprehensive view, which is
beneficial for the deployed policies.

The robot initiates movement upon perceiving a point
cloud. In case the object is not visible during the handover
process, the robot tracks the object’s last known pose. The
baselines, GA-DDPG [43] and Handover-Sim2real [11], are
treated similarly to [11]. For GA-DDPG, the pre-trained
policy model is loaded, and heuristic methods determine
whether to grasp. For Handover-Sim2real, both the pre-
trained policy model and the pre-trained grasp prediction
network are loaded.

C.2. User Study

The study involved 6 participants who compared our
forecast-aided 4D imitation learning method based on land-
mark planning demonstrations, with two baseline methods,
GA-DDPG and Handover-Sim2real. The first user study
contains 5 different objects in two settings. The second user
study contains 15 various and novel objects.

For the first user study, The selected 5 objects for eval-

Simple setting Complex setting
GA-DDPG[43] Handover-Sim2real[11] Ours GA-DDPG[43] Handover-Sim2real[11] Ours

1. plastic mug 5 / 6 4 / 6 6 / 6 2 / 6 2 / 6 4 / 6
2. EFES bottle 5 / 6 4 / 6 6 / 6 4 / 6 3 / 6 5 / 6
3. Cheez-It box 1 / 6 4 / 6 4 / 6 3 / 6 1 / 6 4 / 6
4. sticky tape 3 / 6 3 / 6 5 / 6 3 / 6 3 / 6 4 / 6
5. Pringle can 4 / 6 2 / 6 6 / 6 1 / 6 1 / 6 4 / 6

total 18 / 30 (60%) 17 / 30 (57%) 27 / 30 (90%) 13 / 30 (43%) 10 / 30 (33%) 21 / 30 (70%)

Table 6. User study for sim-to-real experiments. Each method was evaluated by six individuals for every object in both the simple and
complex settings. Failure scenarios included collisions with the human hand, dropping to the table, or exceeding the time limit (Tmax = 13
seconds). Our method consistently outperformed the baselines in the real-world handover system in both simple and complex settings,
aligning with the results observed in the simulation experiments.

Objects GA-DDPG Handover-Sim2real Ours
1. Transparent bottle 1 / 6 2 / 6 3 / 6
2. Transparent beaker 1 / 6 0 / 6 2 / 6
3. Transparent cup 1 / 6 2 / 6 4 / 6
4. Regular cup 5 / 6 1 / 6 5 / 6
5. Glue stick 3 / 6 2 / 6 6 / 6
6. Large teacup 3 / 6 2 / 6 4 / 6
7. Blue ball 1 / 6 1 / 6 4 / 6
8. Small sponge 3 / 6 1 / 6 6 / 6
9. Tape measure 3 / 6 4 / 6 4 / 6
10. Large bucket 4 / 6 1 / 6 5 / 6
11. Stapler 3 / 6 2 / 6 3 / 6
12. Disinfectant 3 / 6 2 / 6 4 / 6
13. Packaging box 2 / 6 2 / 6 4 / 6
14. Saw 2 / 6 2 / 6 5 / 6
15. Book 4 / 6 2 / 6 6 / 6
Overall 43.3% 28.9% 72.2%

Table 7. User study for sim-to-real-experiments in various and
novel objects. Each method was evaluated by six individuals for
every object. Our method outperformed the baselines by a large
margin.

uation include a mug, a bottle, a cracker box, a sticky tape,
and a chips can. The cracker box is an object shown in
DexYCB [8] trajectories, while the other 4 novel objects
may exhibit more diverse geometries.

In the simple setting, users hand each object to the grip-
per in a straightforward manner. In the complex setting,
users execute a relatively long and quick trajectory, involv-
ing both translations and rotations. For each specific object,
we try to ensure that each participant executed a similar tra-
jectory in the same setting for different methods, ensuring a
fair comparison.

Table 6 provides a detailed breakdown of the results pre-
sented in Table 3 of the manuscript. Our method is com-
pared with baselines across different settings, revealing a
remarkable 34% improvement in the simple setting and a
substantial 40% improvement in the complex setting from
Handover-Sim2real. Notably, in the simple setting, our
method demonstrates great generalizability to various ob-
jects, including new objects with different geometries or
similar objects of different sizes. In the complex setting,
our method exhibits smooth object tracking with predic-
tive intention, resembling a more human-like approach to
grasping handed objects. Further analysis will be elabo-

rated in our accompanying video. It is noteworthy that
Handover-Sim2real exhibits a lower success rate compared
with GA-DDPG. One possible explanation is that the pre-
trained grasp prediction network may not be as robust as
heuristic methods in determining whether to grasp, which
may not be able to generalize well to novel objects and po-
tentially increase the sim-to-real gap.

For the second user study, we also expanded the real-
world experiments comparing our method and baselines. 6
users participated by handing over 15 diverse and novel
objects varying in geometry, size, and transparency. Users
provide various trajectories, occasionally adopting a less
cooperative or adversarial manner. They blindly test each
policy on identical trajectories. Our method consistently
outperforms baselines as shown in Table 7. While adversar-
ial behavior and weird object geometry lead to failures in
baselines, our approach generalizes well and adeptly adjusts
to the hand trajectory quickly. For failure cases, our method
faces challenges with transparent objects due to corrupted
depth. The final version will include detailed tests and elab-
orations.

C.3. Generalization Study

In addition to direct comparisons with baseline methods,
we conducted numerous real-world handover experiments
involving different trajectories and objects.

Figure 8 showcases two sets of objects used in our ex-
periments. The simple set comprises regular objects similar
to those used in DexYCB [8] or HandoverSim [9], which
are easier to pass and grasp. The difficult set includes more
challenging objects with diverse shapes and geometries. We
introduced variations in human behavior, such as different
grasping poses or handover trajectories.

As shown in Figure 9, our qualitative experiments re-
veal the robustness of our policy, crafted through extensive
large-scale demonstrations and an imitation learning frame-
work. Trained within the GenH2R-Sim environment, our
policy showcases effective generalization across diverse ob-
jects and various handover scenarios.

Figure 9. Qualitative real-world results with various objects. In the real-robot system, we qualitatively assess the generalization ability
of our method by testing it with various objects.

D. Limitations and Future Work

While in this paper significant progress has been achieved in
the H2R handover task, we acknowledge certain limitations
that could serve as inspiration for exciting future research.

In aspects of robot morphology, we concentrate on the
relatively simple 7DoF robotic arms, characterized by a
confined activity region and limited motion capabilities. In
contrast, robots equipped with a movable base exhibit a
broader range of motion, enabling them to navigate and in-
teract within a more extensive spatial environment, enhanc-
ing their versatility and efficacy in various human-robot in-
teraction tasks.

In aspects of human modeling, our current focus on the
object and hand poses neglects the consideration of the en-
tire human body. In real-world scenarios, robots may need
to take into account not only the hand pose and trajectories
but also the motion of the entire human body for more dy-

namic and generalizable interactions. Extending the simu-
lation environment to model a more complex representation
of the human, including body movements, poses a challeng-
ing yet practical avenue for future work in policy learning.

In aspects of human intention, our simulator currently
does not incorporate human intention. Existing simulation
environments have mainly focused on physical modeling,
lacking representation of human behavior. In Handover-
Sim [9], for instance, the human hand does not respond to
the robot’s actions. In GenH2R-Sim, we introduce a more
interactive element, where the human hand stops moving
and waits for handover when the robot arm is close to the
object. However, there is room for more complex and inter-
esting modeling of human behavior. For instance, when the
gripper moves rapidly toward the hand, the human may per-
ceive danger and retract the hand. Introducing more sophis-
ticated representations of human behavior in the simulator
is crucial for a human-centric handover process.

