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A. Qualitative Results and Video
Please see the supplementary video on the website for an
in-depth qualitative analysis and comparative evaluation
against baseline models. This video showcases a simulation
of a song played in two distinct environments: the Damp-
ened Room and the Hallway. The purpose is to demonstrate
the immersive quality and perceptual accuracy of the audio
rendered by our model, reflecting the true characteristics of
the real scenes. To achieve this, we rendered 100 room im-
pulse responses at various locations, convolved them with
the chosen source audio, and smoothly interpolated between
these convolved signals. For an optimal experience of these
qualitative results, we recommend using earbuds or head-
phones while viewing the video.

Furthermore, the video features a side-by-side compari-
son of our binaural audio results with those from baseline
models, highlighting the enhanced realism and compelling
nature of the audio generated by our model. This compar-
ison underscores the significant qualitative improvements
our model offers in creating an immersive auditory expe-
rience. In addition, the video provides visualizations ex-
plaining our method, and the task setup.

B. RIR Heatmap Visualizations
B.1. Broadband RIR Heatmaps

After our model is trained, we can use it to visualize how
the loudness of the rendered acoustic field varies spatially.
To do this, we use the model trained on each of the base
subdatasets to render RIRs on a dense 2D-grid of listener
locations. We visualize of the root mean square (RMS) vol-
ume level of the RIRs in Figure 1, on a decibel (logarithmic)
color scale. The visualizations shown are similar to those in
[19, 27].

We observe several differences in the heatmaps for the
different rooms. In the Dampened Room, the surfaces are
less reflective, and thus, much of the soundfield’s loudness
is concentrated in the region in front of the speaker. This
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Figure 1. Visualization of RIR loudness maps generated from our model trained in each of the four base subdatasets. We measure loudness
by rendering an RIR at a given listener location and measuring its RMS volume level. For each RIR rendered, we fix the height of the
listener location to be 1 meter above the floor. The resolution of each xy-grid is approximately 5 centimeters in both the x and y directions.
We fix the location and orientation of the speaker (indicated by the black icon) to where it was during RIR measurement. The color scale
is in decibels and is consistent between rooms. The green dots indicate the xy locations of the 12 training points, which are projected onto
the z = 1 plane.

effect is reduced in the Classroom, where the soundfield
is more spread out. In the Hallway, which is the most re-
flective room, the soundfield’s volume is even more spread
out, and the region behind the speaker is significantly louder
than it is in any of the other rooms.

B.2. Soundfield Reconstruction

When observed at a single frequency, the spatial variations
in sound pressure for a given sound field often exhibit modal
patterns. Reconstructing the pressure levels of a sound field
from a sparse set of observations is a problem of longstand-
ing theoretical and practical interest [1, 5, 10, 18]. Using
the RIRs measured in the Classroom subdataset, we calcu-
late the sound pressure level at 70 Hz at all locations in our
subdataset, plotted in Figure 2a. We also use the predicted
RIRs from each method to predict the sound pressure level
at 70 Hz at every spatial location. We find that our model
learns to predict the modal structure of the RIR sound field
without explicitly modeling it, while other baselines fail to
do this. Note that our model approximately predicts the lo-
cations of the sound field’s nodes and anti-nodes (regions
of high and low intensity), even without observing training
data in those locations.

C. Results on Additional Room Configurations

C.1. Description of Additional Subdatasets

In addition to the base subdatasets collected in each of the
four rooms, we collect additional data in different room
configurations, where we vary the location of the speaker,
the orientation of the speaker, or the presence and number
of rectangular whiteboard panels. We collect this additional
data for two reasons:
• To test our method’s effectiveness on various room lay-

outs, including those where the speaker is occluded.
• To evaluate acoustic interpolation methods on the task of

zero-shot generalization to changes in room layouts, by
virtually simulating speaker rotation and translation, and
panel relocation and insertion.
The locations and orientations of the speakers as well

as the positions of the panel(s), are provided as part of the
DIFFRIR Dataset. Photographs of each additional configu-
ration are shown in Figure 3.

Rotation Subdatasets. In the Dampened Room, Hallway,
and Complex Room, we collected 120, 72, and 132 addi-
tional datapoints where the speaker was rotated by 225◦,
90◦, and 90◦clockwise, respectively. The location of the
speaker and all surfaces otherwise remain the same.

Translation Subdatasets. In the Dampened Room, Hall-
way, and Complex Room, we collected 120, 72, and 132
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Figure 2. Visualization of RIR loudness at 70 Hz in the Classroom subdataset. The sound field intensity at a given location is measured by
filtering the ground-truth or predicted RIR around 70 Hz using a 2nd order Butterworth filter [4] and measuring the RMS volume level of
the filtered signal. Subfigure a) shows the intensity of the 70hz sound field at all locations in the subdataset. Subfigure b) shows predicted
intensities at these same locations using our model trained on 12 points. We indicate the spatial locations of these 12 training points with
green dots, and the speaker’s location and orientation with a black icon. Subfigures c) through g) show the sound field intensity as predicted
by each of our baseline models. Note that in subfigure d), the Linear baseline underestimates the soundfield intensity at locations far away
from the training locations, since the linear interpolation at these locations is a weighted average of roughly uncorrelated signals whose
mean is roughly zero.
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Dampened Rotated Dampened Translated Dampened Panel Complex Rotated Complex Translated

Hallway Rotated Hallway Translated Hallway Panel 1 Hallway Panel 2 Hallway Panel 3

Figure 3. Photographs of all additional configurations in the DIFFRIR Dataset. Note that the Hallway Panel 1 photo is taken from behind
the speaker.

additional datapoints where the speaker was translated to
another part of the room, but the orientation of the speaker
is was kept the same. In the Dampened Room, we move
the speaker such that it is near one corner of the room and
facing a wall. In the Hallway, we move the speaker to the
far end of the Hallway, such that the speaker faces the entire
length of the Hallway. The Complex Room is roughly di-
vided into two halves by the table and pillars in the middle
of the room. In the Complex Room, we collect additional
datapoints where the speaker is translated from the one half
to the other.

Panel Subdatasets. In the Dampened Room and Hallway,
we place 1-2 whiteboard panels in the room. In the Damp-
ened Panel subdataset, we place the panel directly in front
of the speaker. In the Hallway subdataset, there are three
panel configurations. In Hallway Panel 1, we place one
whiteboard panel in front of the speaker at a slanted an-
gle. In Hallway Panel 2, we place one whiteboard panel
directly behind the speaker. In Hallway Panel 3, we place
whiteboard panels both in front of and behind the speaker.

C.2. Evaluations on Configurations

We evaluate our model on each of these configurations in-
dependently in Table 1, training and testing on the same
subdataset. For each configuration, we select 12 training
points from each of the subdatasets, and evaluate our ren-
dered RIRs on a test set of held-out data.

RIR Music

Room/Configuration Mag ENV Mag ENV

Dampened 1.21 0.56 1.59 1.19
w/ Rotated Speaker 1.14 0.44 1.49 1.36
w/ Translated Speaker 0.68 0.39 0.91 1.18
w/ Panel 1.23 0.60 1.62 1.47

Hallway 9.13 2.95 2.59 1.25
w/ Rotated Speaker 8.40 2.86 2.58 1.27
w/ Translated Speaker 8.91 3.02 2.84 1.25
Panel Config. 1 8.47 2.99 2.58 1.32
Panel Config. 2 8.52 3.61 2.63 1.36
Panel Config. 3 8.39 2.94 2.67 1.35

Complex 4.86 0.92 2.25 1.41
w/ Rotated Speaker 4.33 0.83 2.13 1.41
w/ Translated Speaker 4.38 1.19 2.22 1.44

Table 1. DIFFRIR’s performance on additional configurations in
the DIFFRIR Dataset, on the task of predicting monaural RIRs and
music at an unseen point. Lower is better for all metrics. Errors
for RIRs are multiplied by 10. Each DIFFRIR model is trained on
12 points.

C.3. Quantitative Results on Virtual Room Layout
Modifications

Since our model learns physically interpretable parameters
for the speaker’s directivity, we expect to be able to virtu-
ally simulate rotations or translations of the speaker that are
unobserved in the training data. We simulate rotating the
speaker by rotating the speaker’s learned directivity map,
and translation by moving the speaker’s estimated location

4



RIR Music

Room/Configuration Mag ENV Mag ENV

Dampened w/ Rotation
Trained on Rot. Data 1.14 0.44 1.49 1.36
Trained on Base w/ Virt. Rot. 1.39 0.51 1.88 1.48

Hallway w/ Rotation
Trained on Rot. Data 8.40 2.86 2.58 1.27
Trained on Base w/ Virt. Rot. 9.83 3.22 2.88 2.50

Complex w/ Rotation
Trained on Rot. Data 4.33 0.83 2.13 1.41
Trained on Base w/ Virt. Rot. 4.84 0.89 2.27 1.59

Table 2. Results on Virtual Speaker Rotation. Evaluations are
done on the test set of the rotated subdataset.

RIR Music

Room/Configuration Mag ENV Mag ENV

Damp. → Hall. 1.
Hall. 1 Model 8.47 2.99 2.58 1.32
Virtual Insertion 9.32 2.96 2.69 1.33

Damp. → Hall. 2.
Hall. 2 Model 8.52 3.61 2.63 1.36
Virtual Insertion 9.31 3.45 2.62 1.38

Hall. 1.→ Damp.
Damp. Panel Model 1.23 0.600 1.62 1.47
Virtual Insertion 1.84 0.660 3.70 1.56

Hall. 2.→ Damp.
Damp. Panel Model 1.23 0.600 1.62 1.47
Virtual Insertion 1.84 0.660 3.70 1.56

Table 3. Results on Virtual Panel Insertion. ‘Damp.→Hall 1.’
means that take the DIFFRIR model from the Hallway Base sub-
dataset (no panel). Then, we virtually insert a panel to simulate
the Hallway Panel 1 subdataset, by borrowing the reflection co-
efficients of the panel from the DIFFRIR model trained on the
Dampened w/ Panel subdataset. We then evaluate the virtual in-
sertion on the recordings from the Hallway Panel 1 subdataset. As
a baseline, we compare to a model that is trained on the same panel
subdataset that it is tested on.

during path-tracing.

These predicted changes in the speaker’s location or
orientation can be evaluated against real data, since the
DIFFRIR Dataset contains additional configurations that
modify the base subdataset in each room by moving or ro-
tating the speaker.

The quantitative results in Tab. 2, 3, 4, and 5 show the
usefulness of the DIFFRIR Dataset in benchmarking the
performance of methods of virtual room layout modifica-
tion. Future work can use the DIFFRIR Dataset to improve
the performance of these tasks.

RIR Music

Room/Configuration Mag ENV Mag ENV

Hall. 1.→ Hall. 2.
Baseline 8.52 3.61 2.63 1.36
Virtual Panel Relocation 8.91 3.59 2.71 1.39

Hall. 2.→ Hall 1.
Baseline 8.47 2.99 2.58 1.32
Virtual Panel Relocation 8.89 3.13 2.72 1.39

Table 4. Results on Virtual Panel Relocation. ‘Hall 1.→ Hall 2.’
means that take the DIFFRIR model from the Hallway Panel 1
subdataset (no panel). Then, we virtually move this panel to its
location in the Hallway Panel 2 subdataset. We then evaluate on
the recordings from the Hallway Panel 2 subdataset.

RIR Music

Room/Configuration Mag ENV Mag ENV

Dampened w/ Translation
Trained on Trans. Data 0.68 0.39 0.91 1.18
Trained on Base w/ Virt. Trans. 1.22 0.53 1.26 1.61

Hallway w/ Translation
Trained on Trans. Data 8.91 3.02 2.84 1.25
Trained on Base w/ Virt. Trans. 9.28 3.05 2.84 1.28

Complex w/ Translation
Trained on Trans. Data 4.38 1.19 2.22 1.44
Trained on Base w/ Virt. Trans. 4.79 1.19 2.24 1.54

Table 5. Results on Virtual Speaker Translation. Evaluations are
done on the test set of the translated subdataset.

Virtual Speaker Rotation. As an experiment, we take
the DIFFRIR model trained on each base subdataset with
a corresponding rotated subdataset, virtually rotate the
speaker by rotating the learned directivity heatmap, and
predict RIRs and music at locations in each of the corre-
sponding rotated subdatasets. We evaluate these predictions
against ground-truth RIRs and music recordings from the
rotated subdatasets. In addition, we compare our virtual
rotation with the performance of the DIFFRIR model both
trained and tested on the rotated subdatasets. The results
are shown in Table 2. Although the model both trained and
tested on the rotated subdatasets outperforms our virtually-
rotated model, the results are quite close in the Dampened
and Complex Rooms. The results in the Hallway are worse,
perhaps because the Hallway’s narrow nature means that the
set of direct paths from the speaker to the training locations
cover a narrow range of outgoing angles.

Virtual Speaker Translation. We perform a similar ex-
periment with virtual speaker translation, evaluating against
ground-truth recordings from the corresponding subdataset.
The results are shown in Table 5.
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Virtual Panel Relocation. We would like to see if we
can learn the reflective characteristics of a surface in one
room, then ‘virtually move’ the surface to another location
in the same room. In the Hallway, we collect two sub-
datasets (Hallway Panel 1 and Hallway Panel 2 in Figure 3),
where the room layouts are identical except for the location
and orientation of a single whiteboard panel. In our exper-
iments, we train on the first panel configuration, then move
the location of the whiteboard panel to that of the second
configuration before performing inference. We then eval-
uate our predicted audio against ground-truth audio from
the second configuration. Results are shown in Table 4.
The baseline shown is one where we train on the same sub-
dataset that we evaluate on.

Virtual Panel Insertion. We would like to see if we can
learn the reflective characteristics of a surface in one room,
then ‘virtually insert’ the surface into another room. Three
of our base subdatasets also include a version with a sin-
gle inserted whiteboard panel. In each of our four exper-
iments, we take the base subdataset (e.g., the Dampened
Base subdataset), and the coefficients learned for the white-
board panel from another room (e.g., the Hallway Panel
Config. 1 subdataset). We then virtually insert the white-
board panel into the base subdataset, and evaluate the vir-
tual insertion against the version of the base dataset with a
panel in it (e.g., the Dampened Panel subdataset). Results
are shown in Table 3. The baseline shown is one where we
train on the same subdataset that we evaluate on.

D. Additional Experiments and Ablations
D.1. Results on Binaural Rendering

We evaluate our method on the task of rendering a binau-
ral RIR at an unseen location. We collect binaural RIRs
at several locations in all rooms using our 3Dio binaural
microphone, and compare these to predicted RIRs that we
binauralize from single-channel audio as described in the
Methods section.

We compare our binauralized audio with the ground-
truth audio using the left-right energy ratio error between
the ground-truth and predicted recordings, which is used
in [7]. To compute the left-right energy ratio, we compute
compute the ratio of total energy between the left and right
channels of the RIR or music recordings. We then compute
the mean squared error between the left-right energy ratio
of the predicted and ground-truth RIRs or music. Results
are shown in Table 6.

Since the baselines do not have a way of generating bin-
aural RIRs from monaural ones, we binauralize these base-
lines by rendering two monaural RIRs at the locations of the
left and right ears of the 3Dio microphone, and combining
them into left and right channels.

Our method outperforms our baselines across most met-

rics. Note that it is difficult to compare a binaural RIR
recorded from our binaural microphone with binauralized
audio originally recorded from a different microphone. Our
rendered binaural audio will have characteristics of the
monaural microphone and the microphones used in the
SADIE dataset [2] used to record the HRIRs that we con-
volve our monaural recordings with. The binaural record-
ings in our dataset will h ave different characteristics, since
they are recorded using a different microphone with dif-
ferent spectral characteristics and directionality. Because
of this, we include qualitative binauralization results in the
supplementary video.

D.2. Performance vs Number of Training Points

We conduct an ablation study with varying numbers of
training points N on each subdataset and compare against
the baselines. As shown in Figure 4, the performance in-
creases with N , and our model consistently outperforms the
baselines when N ≥ 2. Note that in all rooms, our model
trained on only 6 locations outperforms all baselines trained
on 100.

Note that our model’s hyperparameters are optimized for
performance in data-limited scenarios. When the number
of training points is higher, it is possible that increasing the
number of parameters (for instance, increasing the resolu-
tion of the heatmap or the number of reflection coefficients)
leads to even better performance.

D.3. Robustness to Inaccurate Geometry.

Our method requires measuring the room’s geometry. In our
dataset, we do this using a tape measure or laser distance
measure, which both provide sufficiently accurate measure-
ments. In order to explore the effect of inaccurate geomet-
ric measurements, we conduct an additional experiment to
measure the performance after adding random artificial dis-
tortions to the surfaces. In the Classroom, we select 8 ran-
dom directions to move each of the 11 vertices defining the
walls, ceiling, floors and the corners of the tables that are
exposed. We move each vertex by 0-2 meters in its corre-
sponding random direction. Results are shown in Figure 5.
Observe that unless we distort all vertices in the room by
over 1.5 meters, our model outperforms the best baseline
(Nearest Neighbors). We conclude that our method is ro-
bust to geometric distortion.

Geometric distortion can affect our model’s rendering in
one of three ways: It can change the distance of reflection
paths, which affects its time-of-arrival and amplitude; it can
eliminate reflection paths, or it can add new reflection paths.
Since our model is optimized against a frequency-domain
loss whose smallest window size is 256 samples (or 1.8 me-
ters at the speed of sound), our model is robust to perturba-
tions in times-of-arrival.
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Classroom Dampened Room Hallway Complex Room

RIR Music RIR Music RIR Music RIR Music

NN 1.27 0.516 5.64 2.57 0.062 0.034 0.345 0.166
Linear 1.29 0.531 5.48 2.09 0.045 0.008 0.335 0.157
DeepIR 1.10 0.529 6.20 5.90 0.048 0.036 0.350 0.397
NAF 1.93 0.743 5.93 2.37 0.108 0.012 0.320 0.176
INRAS 1.25 0.383 5.86 4.35 1.60 4.41 0.332 0.183
DIFFRIR (ours) 0.43 0.091 2.94 0.316 0.097 0.012 0.287 0.288

Table 6. Experimental results from the task of predicting binaural RIRs and music at an unseen point from a model trained on 12 monoaural
RIRs. We use the left-right energy ratio error metric [7]. Lower is better. All errors are multiplied by 10.
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Figure 4. Evaluations of our method and baselines with different
numbers of training points. We use the Multiscale Log-Spectral
L1 Loss (Mag), and train with N ∈ {1, 2, 6, 12, 25, 100}. All
training locations are selected as nested subsets of one another,
and we evaluate on a fixed test set. Note that the DeepIR baseline’s
error was too large to fit into the range of the plot.

D.4. More Ablations

In the Methods section, Section E.4, and Section E.3,
we discuss several minor components of our model (axial
boosting, time-of-arrival perturbation, hop size 1 loss, etc.)
that provide a boost to our model’s performance and/or ro-
bustness. Results with each of these components ablated
are in Table 7. Our model performs the best on a plurality
of evaluations, proving that these performance boosts are
good on balance. However, we should also observe that
even in evaluations where our model does not perform the
best, it is never worse than the best performing ablation by a
significant margin. We cannot say the same for the Interpo-
lation Spline ablation, which also performs the best in the
same number of evaluations (six), but significantly under-
performs our model in several settings.
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Figure 5. Effect of geometric distortion on RIR prediction per-
formance in the Classroom subdataset The blue line shows our
model’s performance according to the Multiscale Log-Spectral L1
metric, and the red line shows our model’s perfomance accord-
ing to the envelope distance metric. The red and blue dashed lines
indicate the performance of the nearest-neighbors baseline accord-
ing to the multiscale log-spectral L1 metric and the envelope dis-
tance metric, respectively.

D.5. Modeling the Effects of Transmissions

Our model assumes that sound energy encountering a sur-
face is either reflected or absorbed by the surface. This is
for the sake of simplicity. We also conduct an experiment in
which we consider surface transmission as well. This means
that we modify our tracing algorithm to consider reflection
paths that pass through surfaces, and assume that a propor-
tion of the sound energy at each frequency can be transmit-
ted through these surfaces in a frequency-dependent man-
ner. Our modified training procedure then fits surface trans-
mission coefficients in a manner identical to the way it fits
surface reflection coefficients. Table 8 contains quantita-
tive results from a model that models both transmission and
reflection, and shows that in our settings, modeling trans-
mission is not necessary. However, in other rooms with sur-
faces of different materials, modeling transmission may be
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Classroom Dampened Room Hallway Complex Room

RIR Music RIR Music RIR Music RIR Music

Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV

DIFFRIR 5.22 0.942 2.71 1.36 1.21 0.555 1.59 1.19 9.13 2.95 2.59 1.25 4.86 0.917 2.25 1.41
w/o Time-of-Arrival Perturbation 5.19 0.962 2.70 1.43 1.23 0.582 1.61 1.36 9.13 2.93 2.60 1.27 4.86 0.913 2.23 1.42
w/o Axial Boosting 5.19 0.969 2.71 1.43 1.22 0.555 1.59 1.20 9.14 2.95 2.59 1.30 4.86 0.934 2.25 1.44
w/o Hop Size 1 Loss 5.26 0.988 2.74 1.41 1.25 0.559 1.67 1.16 9.22 2.98 2.60 1.24 4.90 0.962 2.27 1.42
w/o Interpolation Spline 5.60 0.973 2.72 1.41 1.63 0.565 1.53 1.16 9.47 2.92 2.56 1.24 5.24 0.920 2.21 1.42

Table 7. Ablation results from the task of predicting monaural RIRs and music at an unseen point. In the Interpolation Spline ablation, the
Residual Component and the contributions from explicitly computed reflection paths are simply added together, instead of being blended
using the learned temporal spline γ. Lower is better for all metrics. Errors for RIRs are multiplied by 10.

RIR Music

Room/Configuration Mag ENV Mag ENV

Classroom
DIFFRIR (ours) 5.22 0.942 2.71 1.36
w/ Transmission 5.23 0.951 2.72 1.36

Dampened Room w/ Panel
DIFFRIR (ours) 1.23 0.604 1.62 1.47
w/ Transmission 1.23 0.604 1.62 1.45

Hallway w/ Panels
DIFFRIR (ours) 8.39 2.94 2.67 1.35
w/ Transmission 8.38 2.92 2.64 1.34

Complex Room
DIFFRIR (ours) 4.86 0.917 2.25 1.41
w/ Transmission 4.86 0.915 2.24 1.38

Table 8. Evaluations of DIFFRIR vs DIFFRIR with Transmission
modeling. Lower is better for all metrics, and RIR errors are mul-
tiplied by 10.

important.

D.6. Comparison to Traditional Acoustic Simula-
tions

We compare our method to a widely-used image-source au-
dio simulator, Pyroomacoustics [25]. For each room in our
dataset, we simulate RIRs by providing the dimensions and
the speaker location, and selecting the closest material coef-
ficients for each surface from its pre-defined database (e.g.,
drywall, ceiling tiles, carpet). Table 9 reports the accuracy
of the simulated RIRs compared to the ground truth.

E. Method Details

E.1. Details on Source Localization

Our method does not require a ground-truth source location
measurement. Instead, we use a simple time-of-arrival tech-
nique to estimate the sound source’s location to a degree of
accuracy sufficient for the subsequent steps of the method.
For each Room Impulse Response (RIR) in the training set,

RIR Music

Room/Configuration Mag ENV Mag ENV

Classroom
DIFFRIR (ours) 5.22 0.942 2.71 1.36
Pyroomacoustics 18.64 3.67 3.26 1.68

Dampened Room
DIFFRIR 1.21 0.555 1.59 1.19
Pyroomacoustics 2.14 0.798 2.17 1.96

Hallway
DIFFRIR 9.13 2.95 2.59 1.25
Pyroomacoustics 32.01 4.03 3.39 1.70

Table 9. Comparison of our model against Pyroomacoustics.
Lower is better for all metrics, and RIR errors are multiplied by
10.

we determine its first peak, which is proportional to the dis-
tance of the direct path between the microphone and source
locations. We locate the first peak of the RIR by measuring
when the RIR first exceeds a quarter of its absolute max-
imum. We then determine the distance from the source to
the target microphone by multiplying by the speed of sound,
assumed to be 343 m/s.

We use a gradient descent optimization method to fit
the optimal source location. We initialize the source loca-
tion to the origin, which is at a corner of the room. We
perform an optimization process that updates the optimal
source location’s position at each step. At each iteration of
the optimization process, we compute the estimated times-
of-arrival for each of the microphone locations, based on
the current estimate for the source location. We then cal-
culate the L1 loss between the estimated times-of-arrival
and the times-of-arrival as measured by locating the first
peak of the ground-truth RIR as described in the previous
paragraph. We perform a gradient update on the estimated
source location to minimize this L1 loss. We optimize for
1000 steps, and use the final estimate for the source location
as our estimated source location.

In all of the base configurations, our method is able
to predict a source location that is inside the location of
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our QSC loudspeaker. We used the estimated location
in all configurations except for the Complex Rotation and
Complex Translation configurations, where our localization
method failed.

E.2. Minimum-Phase Transform

Our model learns the frequency-domain response curve for
each of the surfaces in the room and for each outgoing di-
rection from the source, allowing us to determine how the
frequency profile of sound traveling along that reflection
path is altered. However, this frequency-domain response is
not enough to determine the reflection path’s time-domain
contribution to the RIR, because it contains magnitude in-
formation, but no phase information. In order to invert our
reflection path’s frequency profile into a time-domain sig-
nal, we need to provide phase values at each frequency, so
we can perform the inverse-Fourier transform.

In our analysis, we adopt the minimum-phase assump-
tion to calculate phase values for acoustic reflections, a
method widely recognized and justified within acoustic re-
search [15, 16]. This assumption posits that for each fre-
quency, the phase delay introduced by the reflection is min-
imal, implying that the time delay contributed by the path
of reflection at any given frequency is as short as possible.
From a physical standpoint, this is akin to assuming that
sound is reflected off surfaces with negligible delay, thereby
behaving as if the reflections are ‘instantaneous’ while still
preserving the unique frequency-dependent characteristics
of the reflection. We compute the phase values using the
method described in [26].

E.3. Specific Loss Formulation

Loss Formulation and Equations. We define the loss for
a given short-time Fourier transform (STFT) window size
sw and hop size h in Equation (6). This is the sum of
the L1 distance between the magnitude-spectrograms of the
ground-truth and synthesized RIRs and the log-magnitude
spectrograms of the ground-truth and synthesized RIRs.

In the formula, W and Ŵ indicate the ground-truth and
predicted RIRs, respectively. h indicates the hop length,
sw indicates the STFT window size, and S is the short-time
Fourier transform, or spectrogram, whose arguments are the
time-domain signal to transform, the window size, and the
hop length, respectively. H indicates the hop ratio, or the
hop length divided by the window size. We set H = 0.25.

Equation (7) provides the total loss, which sums across
multiple window sizes, and adds a loss term that uses a hop
size of 1.

Hop Size 1 Loss. We use a spectral loss term with hop
size 1 to ensure that the early part of the RIR has accu-
rate time-domain characteristics, since the hop length of 1
allows for high-resolution in the time domain. We take in-
spiration from [8] for this term, and discover it improves

performance, as seen in Table 7.

Modifications from Related Work. Our multi-scale
spectral plus log-spectral loss is identical to those used
in [9] and [13], with two exceptions: First, is the introduc-
tion of the loss term with hop size one. Second, the min-
imum window size in our loss is 256, instead of 32 or 64.
This is because there will be error in the time-of-arrival of
certain reflection paths, due to geometric measurement error
(which increases with reflection order) or errors in the speed
of sound approximation. This means that the placement in
time of a reflection path’s contribution to our synthesized
RIR may be off from its placement in the ground-truth RIR
by some amount. Using larger window sizes compensates
for this error, since larger windows are more likely to con-
tain both the reflection path’s contribution to our synthe-
sized RIR and its contribution to the ground-truth RIR.

E.4. Small Efficiency and Performance Boosts

Efficiency Boosts. Since each rendered RIR combines
hundreds of reflection paths, we compute all the reflection
path contributions in parallel to minimize runtime. In addi-
tion, all reflection paths for the training points are precom-
puted before training starts.

Time-of-Arrival Perturbation. Since our measurements
of each room are not necessarily precise, to make our model
more robust, especially with an extremely limited number
of measurements, we would like to perturb the surfaces dur-
ing training. However, reflection paths for all training loca-
tions are precomputed before the training process begins.
Perturbing each surface would require retracing at each it-
eration, which is computationally inefficient. As a proxy to
this, we perturb the time of arrival of all paths by adding
Gaussian noise to it, with a standard deviation of 7 samples.
We found that this improved the interpretability of the es-
timated parameters and led to minor perfomance boosts, as
shown in Table 7.

Regularization via Convolution with Pink Noise. Since
RIRs are often used as a means to simulate sounds in an
acoustic environment, we would like to not only ensure that
our rendered RIRs are accurate, but also that the sounds we
simulate via convolution with the RIR are accurate. Mini-
mizing the spectral loss between ground-truth and predicted
RIRs does not always accomplish this, since convolving the
RIRs with other waveforms results in significant changes in
the spectrograms.

Pink Noise is a special type of noise whose power spec-
tral density is inversely proportional to frequency. It is ubiq-
uitious in nature [3], and is often used as a test signal to cal-
ibrate sound systems and loudspeakers, since its frequency
profile is similar to that of music [11] and other sounds the
speaker might play.

To encourage our model to maintain accuracy post-
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Lsw,h(W, Ŵ ) = |S(W, sw, h)− S(Ŵ , sw, h)|+ | logS(W, sw, h)− logS(Ŵ , sw, h)| (6)

L(W, Ŵ ) =

 ∑
sw∈(512,...4096)

Lsw,Hsw(W, Ŵ )

+ L256,1(W, Ŵ ) (7)

convolution, we implement a regularization strategy using
pink noise. For the latter half of training iterations, we con-
volve both our predicted and the ground-truth RIRs with
five seconds of randomly generated pink noise, compute the
loss between them, and add it to the loss computed between
RIRs at each iteration. Convolving RIRs with pink noise
simulates the speaker playing of a pink noise test signal. It
is equivalent to reshaping the RIR’s spectrum according to
the profile of pink noise, and applying a random phase shift
at each frequency.

Table 10 shows that this form of regularization results in
improvements in both RIR prediction and music prediction.
Such forms of regularization should be the study of future
work and theoretical study.

With the goal of improving rendered music in mind,
we also tried a similar form of regularization, where we
convolve both our ground-truth and predicted RIRs with
five seconds of music randomly sampled from the FMA
dataset [12] at each iteration after training is halfway done.
Convolution with the music files simulates the speaker play-
ing them. Results for this form of regularization are also
shown in Table 10, although we prefer the performance and
simplicity of pink noise regularization.

E.5. Computational Cost

Training and Path-Tracing Time. In all of our experi-
ments, we trained our model for 1000 epochs. In Table 11,
we report the amount of time it took for our model to train
on each of the base room configurations. Note that since
the Complex Room is only traced up to order 4, there are
substantially fewer valid reflection paths, and thus training
is faster. In all other rooms, we trace up to order 5. Tracing
is slower in rooms with more surfaces.

Main Contributions to Training Time. We also mea-
sured the different steps in the training process to see which
ones took the longest. Each training location is associated
with hundreds of reflection paths that must be added to-
gether to form the the RIR. While rendering these contri-
butions is done in parallel, compiling them requires plac-
ing them in at the right locations in time and is done se-
quentially. In practice, 37.7% of the time during the 1000
epochs is spent on this compilation, 61.9% on the back-
wards passes, and 0.4% on everything else.

F. Baseline Implementation Details

Linear. The Linear baseline computes a RIR at a given
test location by taking a linear combination of the four
nearset points in the training data. The weights on each of
these four training points are inversely proportional to the
distance to the test location. We also experimented with tak-
ing a weighted combination of all the training data, where
the weights are inversely proportional to distance. This al-
ternative linear baseline performs quite poorly, with error
increasing with the number of training points. This is be-
cause the training RIRs are roughly uncorrelated with mean
zero, so the average of N RIRs tends towards zero as N
increases.

Neural Acoustic Fields (NAF) [19]. To compare our
method to NAF, we utilized NAF’s official code,1 as open-
sourced by authors. However, in order to apply NAF to our
dataset and experimental settings, we modified this code in
some minor ways. Specifically, the original NAF was de-
signed to estimate arbitrary stereo RIRs constrained to lie
on a 2D horizontal plane within a 3D room, i.e., it did not
consider a z-axis and thus does not output RIRs at arbi-
trary heights. Therefore, we added the height on the z-axis
as an input, embedding it by using the same positional en-
coding [21, 23] as the authors’ code. The corresponding
elements of the network architecture, e.g., the number of
units in the input layer, were also modified. The architec-
ture we used for NAF in our experiments consisted of 8
linear layers with Leaky-ReLU activations [20]. Note that
we only changed the number of the number of units in the
input layer, from 126 to 168, due to the aforementioned ad-
dition of z-axis features. In addition, the NAF we used in
our experiments was designed to output only magnitude-
spectrograms, i.e., without any phase information, because
the official code also does not have the phase-related loss
and corresponding phase output. We utilized the Griffin-
Lim algorithm [14] to estimate the phase of each magnitude
spectrogram and render the time-domain RIRs. For train-
ing, we followed the same process in their official code and
used the model’s weights after the final training epoch for
inference and evaluation. Finally, we used a 48000 Hz sam-
ple rate rather than the original 22050 Hz. All other settings,
such as the optimizer, number of epochs, learning rate, etc.,
are the same as their official implementation.

1https://github.com/aluo- x/Learning_Neural_
Acoustic_Fields
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Classroom Dampened Room Hallway Complex Room

RIR Music RIR Music RIR Music RIR Music

Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV Mag ENV

Pink Reg 5.22 0.942 2.71 1.36 1.21 0.555 1.59 1.19 9.13 2.95 2.59 1.25 4.86 0.917 2.25 1.41
No Reg. 5.22 0.973 2.76 1.47 1.23 0.579 1.62 1.33 9.17 2.99 2.71 1.35 4.84 0.908 2.26 1.45
Music Reg. 5.20 0.952 2.72 1.40 1.22 0.569 1.62 1.27 9.14 2.96 2.65 1.31 4.84 0.903 2.25 1.42

Table 10. Comparison of our model trained with no regularization, regularizing by convolving with pink noise, and regularization by
convolving with music, on the tasks of monoaural RIR and music prediction. Lower is better for all metrics, and RIR errors are multiplied
by 10.

Room Training Time (Hours) Inference Time (s) N. Surfaces Tracing Time (s) Avg N. Reflection Paths

Classroom 9.61 0.90 9 4.3 874
Dampened 5.75 0.56 6 0.83 675
Hallway 8.97 0.90 6 1.5 853
Complex 2.82 0.37 33 47 439

Table 11. In all of our experiments, we train our model for 1000 epochs and report the training time that this takes in each room, in the
base configuration. In addition, we report the inference time, or the time it takes our model to render a single RIR. Before training begins,
we precompute the reflection paths that go between the source and listener locations, up to a certain maximum reflection order, so we also
report this tracing time to trace reflection paths, per listener location of each room and its corresponding subdataset. We also report the
number of valid reflection paths found by the tracing algorithm, as an average across all points in the subdataset.

Deep Impulse Responses (DeepIR) [24]. Unlike NAF,
the authors of DeepIR have not open-sourced an official
codebase. Therefore, we implemented DeepIR ourselves,
based on the details in their paper. Specifically, we built a
simple multi-layer perceptron (MLP) consisting of 6 linear
layers, each followed by leaky-ReLU activations. The input
feature vector consists of (x, y, z, t), which are the desired
spatial coordinates and the time index, respectively. Similar
to NAF, we applied positional encoding to all inputs before
passing them into the MLP. Hence, the number of units in
the input layer is demb, whereas all other layers have 512
units. DeepIR directly outputs the tth time sample of the
RIR to produce an estimate ÎR of the full RIR. We then
convolve this with the arbitrary dry source audio x, to pro-
duce an estimate ŷ of the sound of the arbitrary audio being
recorded from the specified source and listener location in
the room, i.e., ŷ = x ∗ ÎR. We optimized ŷ according to
an L2 loss comparing the log-magnitude spectrogram with
that of the corresponding ground-truth audio ygt. We omit-
ted the noise model, since our dataset did not include ar-
tificially added noise, and the noise in our recordings was
minimal. We set other hyperparameters for DeepIR such as
the optimizer, learning rate, the number of epochs, etc., to
the same values as NAF.

Implicit Neural Representation for Audio Scenes (IN-
RAS) [27]. The authors of the INRAS baseline released
their code in the Supplementary Materials of their submis-

sion.2 We use their code with some minor modifications.
The framework is originally trained and tested on data from
the SoundSpaces dataset [6], which provides simulated bin-
aural recordings within virtual environments. The archi-
tecture is built around consuming this data, where each
simulated recording represents a stereo, binaural recording
with the head positioned at one of the four cardinal an-
gles. Our training sets use exclusively monaural record-
ings from omnidirectional microphones. Thus, in order to
make our changes to the network as minimal as possible, we
duplicated our mono-channel recordings to stereo-channel
recordings and assumed them to all be at the 0◦ angle. We
then took only the left channel of the stereo output as the
framework’s estimate of the monaural RIR. Since INRAS
consumes environment meshes, we provide it with a 3D
scan of each room. Otherwise, we used mostly the same
hyperparameters as the original, with the exception that we
increased the sample rate from 22050 to 48000 Hz. Since
our training set of 12 recordings per subdataset was approxi-
mately four orders of magnitude smaller than the datasets on
which the authors had trained, we increased the initial learn-
ing rate from to 0.001 instead of 0.0005, slowed the learning
rate’s exponential decay schedule to decay rate γ = 0.1 over
3000 epochs rather than 50, and trained for 5000 epochs
rather than 100. We evaluated the model against a valida-
tion set every 100 epochs. For our test evaluations of IN-
RAS, we used the weights and consequent outputs of the
model with the best performance across all such validation

2https://openreview.net/forum?id=7KBzV5IL7W
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Figure 6. A photo of the data collection procedure in the Damp-
ened Room. The custom microphone frame holds 12 microphones,
as well as a 3Dio FS XLR binaural microphone.

evaluations.

G. Data Collection Procedure Details

We use a custom-built microphone frame designed to ac-
commodate 12 Dayton Audio EMM6 measurement micro-
phones, as well as one 3Dio FS XLR binaural microphone,
all of which were rigidly mounted at precisely measured
positions on the frame. Figure 6 shows a photo of the mi-
crophone frame used to collect the data. We set the origin
of each room such that there is one wall representing x = 0
and one wall representing y = 0. Before each recording,
we positioned the frame within the room and measured the
distance from the edge of the frame to each of the origin
walls using a tape measure or a Bosch GLM20 laser dis-
tance measure, which have 1 and 3 millimeter measurement
resolutions, respectively. We use the measured position of
the frame’s corner as well as the pre-measured offset of each
microphone from the frame’s corner in order to annotate
each microphone’s position in the room to sub-centimeter
precision for our dataset.

G.1. Estimating the Room Impulse Response (RIR)

In order to measure each RIR, we played a logarithmic sine
sweep through the speaker. The sweep spanned from 20 Hz
to 24 kHz for 10 seconds, followed by 4 seconds of silence.
This sine sweep was recorded from each of the microphones
simultaneously at each gantry position. While sending the
sine sweep signal from the audio interface to the speaker,
we also recorded loopback signal by wiring the audio in-
terface’s output to one of its inputs. We used this loopback
signal to estimate and correct for the latency in the system.

To compute the RIR r[t], we take

r[t] = IFFT

(
FFT (a[t])

FFT (l[t])

)
,

where FFT and IFFT are the Fast-Fourier Transform and
its inverse respectively, a[t] is the digital recording of the
sine sweep, and l[t] is the digital loopback signal. Note
that we deconvolve the loopback signal from the recording,
instead of deconvolving the source signal sent to the speaker
from the recording. We assume that the loopback signal is
the same as the source signal, but delayed in time by the
latency of the system. Deconvolving from a delayed copy of
the source signal instead of directly from the source signal
thus corrects for the delay in the system. We remove the last
0.1 seconds of the 14-second RIR to eliminate anti-causal
artifacts.

In addition, to account for differences in microphone
sensitivity, we adjust the volume of each sweep record-
ing according to the sensitivity of the microphone used to
record it. Specifically, we look up each EMM6’s micro-
phone’s response at 1000 Hz in dB from its calibration
sheet, and reduce the overall volume of its recordings by
the same amount.

G.2. Room Geometry Estimation

As the wavelengths of audible sound typically range from
2 cm - 17 m [22], the prominent sound waves are likely to
bypass or diffract around smaller surfaces. Hence, we only
focus on modeling salient surfaces (e.g., walls, pillars, table
tops), which are often characterized by planes, and simply
trace the reflection paths using image source methods. For
the rooms we captured in our dataset, we also measured the
walls and surfaces and manually created planar mesh-based
reconstructions of them. With the recent progress in visual
3D scene reconstructions [21], our geometric estimation can
also easily be replaced by automatic algorithms or even ma-
ture customer tools such as Polycam.

H. Guidelines for Microphone Placement.
To maximize efficiency, we found it empirically beneficial
to spread our RIR locations in all three dimensions. This
allows us to 1) cover a variety of angles around the speaker,
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Figure 7. The distributions of three different sets of training points
in the Classroom subdataset. The grey lines indicate the locations
of tables in the subdataset.

RIR Music

Training Point Configuration Mag ENV Mag ENV

Near 5.89 1.14 3.25 1.61
Spread 5.39 0.976 2.80 1.36
Corner 5.88 1.07 3.12 1.41

Table 12. Evaluations of DIFFRIR on different datasets of size 6,
with varying spatial distributions. All microphone locations are
selected from Z = 0.98, and all locations used for testing and
evaluation are also selected from Z = 0.98. Lower is better for all
metrics, and RIR errors are multiplied by 10.

which likely leads to better speaker directivity estimates, 2)
disentangle the effects of individual reflections, and 3) bet-
ter estimate the diffuse sound field, which is approximated
in our model as spatially uniform.

To study this effect, we conducted an experiment in
the Classroom subdataset. We select three different sets
of training locations (shown in Figure 7), each of which
contain 6 RIR recordings from 6 different locations. For
simplicity, these training locations were selected in the 2D
plane defined by Z = 0.98. We evaluated DIFFRIR trained
on each of these sets of training locations on a test set com-
prised of other points selected in the Z = 0.98 plane.

Our best performance across all metrics is achieved in
the ‘Spread’ configuration of training points, confirming
our intuition. Interestingly enough, the ‘Near’ Configura-
tion performed the worst. We believe this could be due to
the model overfitting to the near-field of the speaker [17],
which can be substantially different than the sound field at
other locations in the room.
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