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1. Overview
We propose a hyper-network-based MD method called
Hyper-MD, which effectively denoises meshes by utilizing
customized parameters that are aware of noise intensity and
geometric characteristics of each facet. In this supplemen-
tary material, we present additional details and discussions
regarding the proposed method. The following sections
are included to provide a comprehensive understanding of
Hyper-MD:
• Studies on the Agent.
• Implementation Details.
• Studies on Customized Layers.
• Studies on Hyperparameters.
• Additional Experimental Results

2. Studies on the Agent
As described in Subsection 3.2, denoising is performed
without access to clean meshes. To address this issue, we
develop an agent that approximates clean meshes through
filtering, enabling the calculation of αn and αg . In this sec-
tion, we discuss the rationale behind the agent’s design. We
generate α̂n and α̂g based on clean meshes, and plot the re-
lationships between various angles in Figure 1. Subplot (a)
illustrates a clear positive correlation between αn and α̂n.
This indicates that the agent’s estimation of αn aligns well
with the true values derived from clean meshes. Further-
more, subplot (b) depicts the relationship between αg and
α̂g , while subplot (c) represents the relationship between
α′g (calculated based on the original noisy meshes) and α̂g .
Comparing subplot (b) and subplot (c), we observe that the
correlation between αg and α̂g is more pronounced. In sum-
mary, the filtered mesh serves as a reasonable agent of the
clean mesh, as evidenced by the clear correlations between
the estimated angles and their respective ground truth val-
ues. This justifies the use of the filtered mesh as an agent
for the clean mesh in our approach.

3. Implementation Details
This section provides implementation details of the method.
The facet attributes utilized in Hyper-MD include the nor-
mal, centroid, and area. During the training of Hyper-MD,
we initialize the weights using a truncated normal distri-
bution. The employed optimizer is Adam with default pa-
rameter settings in PyTorch, namely β1 = 0.9, β2 = 0.9,
and ϵ = 10−8. We set the batch size to 512 for training.
The choice of batch size may vary depending on the specific

Figure 1. Relationship between angles calculated using different
meshes. αg and αn are obtained based on filtered meshes. α̂g

and α̂n are calculated based on clean meshes. α′g is computed on
noisy meshes.

dataset and computational resources available. The training
of Hyper-MD is conducted on a computer equipped with an
AMD Ryzen 9 5900HX CPU and a NVIDIA GeForce RTX
3080 Laptop GPU.

On the SynData dataset, we randomly select 600 faces
from each noisy mesh to participate in training during every
epoch. In the first training step, the denoising network is
trained for 1000 epochs. The learning rate is initially set
to 0.0001 and is halved after the 600th and 800th epochs.
In the second training step, each denoising model is trained
for 500 epochs. The learning rate is set to 0.00001, which is
lower than the initial learning rate used in the first training
step. In the third training step, the hyper-network is trained
for 500 epochs. The learning rate remains at 0.00001. This
step focuses on training the hyper-network to dynamically
customize network parameters for each facet, enhancing the
overall denoising performance.

Regarding the three Kinect datasets, it is worth noting
that the noise intensity across all noisy meshes is simi-
lar. As a result, there is no need to consider noise inten-
sity as a factor, and therefore, αn is no longer input into
the hyper-network. Furthermore, when dealing with the
Kinect datasets, there are only four candidates for coarse-
grained bases. These bases correspond to four categories



Figure 2. The schematic diagram of different facet categories.

Table 1. The experimental results for studies on customized lay-
ers. ✓means that the corresponding fully connected layer is cus-
tomized by the hyper-network.

Variants fc1 fc2 fc3 fc4
Simple Complex
Ea Ev Ea Ev

V1 × × × ✓ 4.93 2.61 5.87 10.44
V2 × × ✓ ✓ 4.84 2.49 5.60 9.11
V3 × ✓ ✓ ✓ 4.45 2.33 4.68 8.56

Best ✓ ✓ ✓ ✓ 4.32 2.20 4.50 7.85

Figure 3. Ea decreases as the iteration number increases.

that are divided based on αg , as depicted in the schematic
diagram shown in Figure 2. During the training process,
we randomly select 200 facets from each noisy mesh in
every epoch. In the first training step, the denoising net-
work is trained for 500 epochs, starting with a learning rate
of 0.0001. The learning rate is then halved after the 300th
and 400th epochs. Moving on to the second training step,
each denoising model is trained for 200 epochs, with a fixed
learning rate of 0.00001. Finally, in the third training step,
the hyper-network is trained for 200 epochs, also with a
learning rate of 0.00001.

Table 2. The results of hyper-parameter selection experiments. r1
denotes the number of rings for the input patch. r2 is the number of
rings for the patch used to calculate αg . I is the iteration number
of mean filtering. nc is the category number of facets.

Settings r1 r2 I nc
Simple Complex

Ea Ev Ea Ev

Best 3 2 20 4 4.32 2.20 4.50 7.85
V1 2 2 20 4 5.31 2.86 5.99 10.45
V2 4 2 20 4 4.92 2.31 5.32 9.51
V3 3 1 20 4 4.99 2.72 5.45 8.89
V4 3 3 20 4 4.84 2.67 5.22 8.46
V5 3 2 10 4 5.12 2.64 5.23 8.48
V6 3 2 30 4 4.86 2.54 5.31 8.39
V7 3 2 20 3 4.43 2.31 4.71 8.12
V8 3 2 20 5 4.31 2.23 4.56 7.97

4. Studies on Customized Layers
In Hyper-MD, the parameters of the four fully connected
layers in MNI are customized by the hyper-network. We
have also conducted experiments where we customized par-
tial layers, and the results are presented in Table 1. As ex-
pected, the performance improves as we customize more
parameters. This is due to the higher flexibility that comes
with customizing a greater number of parameters.

Metrics Clean Noisy Hyper-MD

Vertex Accuracy 84.73% 79.56% 83.84%
Face Accuracy 84.70% 79.19% 83.81%

Table 3. The results of the human body segmentation task.

5. Studies on Hyper-parameters
In Hyper-MD, careful consideration is given to the design
of several hyper-parameters, including the patch size of the
input for the denoising network, the patch size for angle
calculation, the iteration number of the mean filter, and the
category number. These parameters are introduced and dis-
cussed in detail in Section 3. Methodology. To evaluate the
impact of these hyper-parameters, we conduct experiments
on the SynData dataset and present the results in Table 2.
Each row in the table corresponds to a specific parameter
setting, with the first row representing the best parameter
setting obtained. To facilitate the selection of each parame-
ter, we adopt a systematic approach where each setting only
modifies one parameter at a time. The modified parameter
in each setting is clearly marked in bold, allowing for easy



Figure 4. The results of complex shapes on SynData.



Figure 5. The results of simple shapes on SynData.



Figure 6. The denoising results of models collected from the internet.

Figure 7. The results of the human body segmentation task.

identification and comparison. In addition to the parame-
ters in Table 2, the k for developing an agent is set to 20 on
SynData, whereas on real-scanned datasets, k equals 5.

Besides, we conduct some discussion on the category
number of facets. The category number is determined by
two factors. The first factor is noise intensity which is re-
vealed by αn. In the Synthetic dataset, we have introduced
three levels of noise to clean meshes, resulting in the natural
division of facets into three categories based on αn. How-
ever, in the three Kinect datasets, where the noise level is
consistent in each dataset, facets are not classified based on
noise intensity. The second factor is the geometric charac-
teristic, described by αg . Following the approach in [3] and

Figure 8. The color mapping of the offsets for each face.

[2], we classify facets into 4 categories with different ge-
ometric characteristics. Nevertheless, we still try 3 and 5
categories, and collect the experimental results in Table 2,
from which we can see that 4 categories perform best.

6. Additional Experimental Results

Due to the limitation of paper length, some experimental
results cannot be included in the main body. This section
provides additional results.

In our experiments, we fixed the iteration numbers at 10,
20, and 30 for noise levels of 0.1, 0.2, and 0.3, respectively.
The results of different iteration numbers are depicted in
Figure 3. We can observe that as the iteration number in-



creases, the angle error (Ea) decreases, indicating improved
denoising performance. It is important to note that further
iterations could potentially optimize the denoising output
even more. However, due to the absence of clean meshes
during the denoising process, exhaustive search for the op-
timal iteration number is not feasible.

Figure 4 shows the denoising results of all complex
shapes on the SynData dataset, while Figure 5 presents the
results of simple shapes. In both cases, the noise level is
set to 0.3. We can see that our results show the least yellow
and the most blue In Figure 4, indicating superior denoising
performance. However, in Figure 5, TGV outperforms the
proposed Hyper-MD.

Figure 6 shows the denoising results of models collected
from Internet. We can see that the performance of the com-
pared methods is similar, except that our method produces
better feature recovery results, which further verifies the ca-
pability of Hyper-MD.

To verify the efficacy of the proposed mesh denoising
method, we conduct experiments on a human body segmen-
tation task using Laplacian2Mesh [1]. The results in Table
3 and Figure 7 demonstrate that our method provides non-
trivial enhancements.

For each face, we compress its Wf
4 into a 3D vector us-

ing PCA, and then scale it to the range of 0-255, represent-
ing the RGB values of the face. Some colored meshes are
shown in Figure 8. As expected, the offsets are related to
geometry and noise.
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