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In this supplementary material, we include:
1. Video visualizations of (a) the baseline failure modes

identified in the main paper (section 1) and (b) ICON
predictions on CO3D and self-recorded videos.

2. Per-scene performance breakdown of ICON in the main
paper (section 2)

3. Discussions on evaluation differences with NoPE-
NeRF [2] and LocalRF [6].

4. Additional benchmarking on remaining categories on
CO3D [8] (section 4).

5. A proof of concept experiment ICON for scene-level
joint pose + NeRF learning on ScanNet [4] (section 5).

6. Our discussion on the limitations and future directions
of the proposed method (section 6).

1. Visualizing failure modes
In the supplementary materials, we provide several video
visualizations of the failure modes discussed in section 3 of
the main paper and visualized in 2D in Fig.3 in the main pa-
per. Note that the failure modes come from baseline meth-
ods that jointly optimize pose and NeRF, where ICON is
designed to avoid these failure modes. We provide a cata-
log here:
• ToyTruck Fragmentation.mp4: we lift the point cloud

from 7 frames using the predicted color and depht value.
It is the same toytruck used in Fig.3 in the main paper.
We observe that each pose produces its own mini ra-
diance field, mutually invisible from each other’s view-
point. Poses fly through this tube flipbook-style, seeing a
single toytruck.

• Apple GBR.mp4: we lift one frame to point-cloud using
the predicted color and depth value. It is the same scene
used in Fig.3 in the main paper. We can observe the Gen-
eralized Bas Relief [1] effect, where the apple appears to
be rotating to the opposite direction as the camera. At a
breaking point, we can observe that the apple is indeed
concave in the table.
*Equal contribution.

• Bench GBR.mp4: similar to the apple example, we pro-
vide an additional one to show GBR effect with a bench.

• Toaster Overlapping Registration.mp4: we use
marching cube to collect a set of 3D points and visualize
the point cloud. It is the same toaster used in Fig.3 in
the main paper. We can observe the effect of overlapping
registration, where one side is empty due to no coverage
from the cameras and the other side is blurry due to
overlapped camera coverage.

In addition, we include several video visualization of ICON
on CO3D and self-recorded videos. The visualizations are
composed of two parts. It begin with a clip showing the
original video and shape evolution over training. The shape
by converting radiance field from ICON through March-
ing Cube, which is gradually refined as training continues.
The viewpoint to render the shape is decided by the camera
pose prediction from ICON. This show the reconstruction
quality of ICON as well as the pose predictions, in par-
ticular for dynamic objects. These videos are titled with
“{object name} Evo.mp4”.

2. Per-scene performance breakdown
We expand ICON results presented in main paper in sec-
tion3 on CO3D full scene, CO3D object-only and HO3D [5]
to document per-scene performance. Results are summa-
rized in Tab. 1, Tab. 2 and Tab. 3.

3. Evaluation differences
For novel-view synthesis, NoPe and LocalRF use a dif-
ferent protocol: instead of directly aligning the predicted
and GT camera (as in BARF, NeRF--, and ICON), test im-
age poses are initiated from the closest training pose (using
GT), followed by test-time optimization to refine. This in-
creases view-synthesis quality significantly when pose pre-
dictions are poor, boosting NoPe, L2G, and LocalRF PSNR
to 16.6, 17.4, and 15.4 respectively. For data, we also ob-
serve prior works using short trajectories with ∼40◦ max
rotation (NoPe), coarse pose initialization (L2G), and long

1

https://weiyaowang.github.io/icon/


Category Scene ATE ATErot PSNR SSIM LPIPS
apple 189 20393 38136 0.027 0.09 24.83 0.74 0.32
ball 123 14363 28981 0.454 2.31 16.43 0.43 0.74
bench 415 57121 110109 0.002 0.12 26.03 0.69 0.33
book 247 26469 51778 0.219 1.41 26.79 0.76 0.30
bowl 69 5376 12833 0.338 2.02 15.33 0.35 0.68
broccoli 372 41112 81867 0.022 0.14 26.40 0.79 0.35
cake 374 42274 84517 0.040 0.31 23.85 0.76 0.26
hydrant 167 18184 34441 0.092 0.69 19.05 0.54 0.49
mouse 377 43416 86289 0.240 1.33 22.33 0.71 0.36
orange 374 42196 84367 0.200 3.86 24.71 0.80 0.35
plant 247 26441 50907 0.190 1.95 16.30 0.43 0.59
remote 350 36761 68623 0.043 0.28 27.08 0.66 0.42
skateboard 245 26182 52130 0.061 0.34 21.37 0.67 0.58
suitcase 109 12965 23647 0.110 1.37 17.77 0.61 0.48
teddybear 34 1479 4753 0.050 0.55 24.08 0.76 0.32
toaster 372 41229 82130 0.240 2.57 20.11 0.53 0.50
toytrain 240 25394 51994 0.170 1.92 19.08 0.66 0.49
toytruck 190 20494 39385 0.010 0.17 27.39 0.87 0.15
Avg 0.138 1.16 22.24 0.65 0.43

Table 1. Per-scene performance of ICON on CO3D full scene eval-
uation.

Category Scene ATE ATErot PSNR SSIM LPIPS
apple 189 20393 38136 0.255 1.70 26.59 0.95 0.06
ball 123 14363 28981 0.450 2.54 20.27 0.93 0.09
bench 415 57121 110109 0.183 1.22 24.26 0.80 0.19
book 247 26469 51778 0.174 1.36 24.24 0.89 0.13
bowl 69 5376 12833 0.637 4.66 16.91 0.94 0.09
broccoli 372 41112 81867 0.201 1.65 24.63 0.93 0.09
cake 374 42274 84517 0.058 0.46 21.53 0.91 0.12
hydrant 167 18184 34441 0.150 1.05 23.86 0.92 0.12
mouse 377 43416 86289 0.420 7.09 15.93 0.80 0.31
orange 374 42196 84367 0.387 3.84 29.34 0.98 0.02
plant 247 26441 50907 0.075 0.62 18.28 0.75 0.27
remote 350 36761 68623 0.109 0.71 25.38 0.94 0.09
skateboard 245 26182 52130 0.194 1.50 19.51 0.81 0.18
suitcase 109 12965 23647 0.082 0.78 21.17 0.89 0.18
teddybear 34 1479 4753 0.053 0.42 24.56 0.91 0.10
toaster 372 41229 82130 0.225 1.01 20.79 0.94 0.10
toytrain 240 25394 51994 0.159 1.19 20.35 0.83 0.18
toytruck 190 20494 39385 0.066 0.68 26.46 0.95 0.05
Avg 0.215 1.80 22.45 0.89 0.13

Table 2. Per-scene performance of ICON on CO3D object-only
evaluation.

trajectories but little rotation (walking forward) (LocalRF);
pairwise pose changes are also small (< 0.5◦). In contrast,
CO3D has 360◦ rotation with an average 2-4◦ relative ro-
tation between frames. For evaluation, LocalRF and NoPE
sample held-out interpolating frames to test, which are close
to adjacent training frames on either side. We follow BARF
in holding out the last 10% of frames for test; these ex-
trapolating frames have larger viewpoint differences and are

ATE ATErot Trans PSNR CD(cm)
SiS1 0.028 3.80 0.017 19.13 0.23
MC1 0.019 5.90 0.049 14.24 0.41
ABF13 0.064 10.67 0.094 11.79 1.72
GPMF12 0.029 11.23 0.056 16.27 0.38
ND2 0.027 7.18 0.015 20.06 0.50
SM2 0.026 5.56 0.032 13.51 0.85
SMu1 0.017 13.19 0.081 14.46 1.02
AP13 0.058 7.06 0.046 20.42 0.50
Avg 0.033 8.07 0.049 16.24 0.70

Table 3. Per-scene performance of ICON on HO3D evaluation.
CD stands for Chamfer Distance, measuring mesh quality.

more challenging.

4. Evaluating ICON on other CO3D categories
In this section, we supplement the results reported in the
main paper on CO3D [8]. We add a study using all the
remaining 33 categories from CO3D and evaluate on the
full scene. This makes it possible for us to include sym-
metric objects such as vase whose poses are indistinguish-
able in the object-only evaluation. Since no official subset is
specified for these categories, we take top-4 instances from
each category with highest camera pose confidence and ran-
domly sample one instance for each category. It is worth
noting that the “ground-truth” camera poses are estimated
by COLMAP, and may not be 100% accurate, especially
these categories are not part of the official benchmarking
sets. We use the same (hyper-)parameters as the main paper
benchmarking on the 18 categories.

We report the results in Tab 4. We observe that most
objects achieve similar results as Tab 1. However, there are
a few objects where ICON yields imprecise poses, dragging
down the average metrics. We believe there are two causes.
First, ICON relies on photometric loss and may suffer from
changes in the scenes. Many of the scenes where ICON
has ≥ 3 degree rotation error have moving shadows (either
object or human), strong lighting change (from the builtin
flash of the camera) or reflective surfaces. We show a few
examples here in Fig. 1. Second, the groundtruth poses used
to evaluate the trajectory are generated by COLMAP, which
may not be accurate, especially the categories not included
in the official benchmarking sets.

5. Evaluation on ScanNet
ICON focuses our study on object-centric videos such as
CO3D and HO3D. However, ICON does not apply specific
design tailored towards object that prevents it to work on
other types of videos. Here, we include a preliminary study
by benchmarking ICON on ScanNet [4]. We randomly sam-
ple 10 out of 20 scenes in ScanNet test set and use a clip of
200 frames with a stride of 2. Scenes with NaN value in



Category Scene ATE ATErot PSNR SSIM LPIPS
backpack 506 72977 141839 0.060 0.42 20.74 0.59 0.42
banana 612 97867 196978 1.691 11.23 13.04 0.15 0.81
baseballbat 375 42661 85494 0.791 7.83 13.92 0.61 0.68
baseballglove 350 36909 69272 0.054 0.72 20.52 0.43 0.62
bicycle 62 4324 10701 0.700 5.94 15.22 0.19 0.69
bottle 589 88280 175252 0.098 1.18 29.59 0.76 0.38
car 439 62880 124254 0.765 4.43 11.40 0.32 0.87
carrot 372 40937 81628 0.873 2.17 20.86 0.63 0.44
cellphone 76 7569 15872 4.725 19.55 13.26 0.30 0.85
chair 455 64283 126636 0.009 0.28 22.77 0.73 0.27
couch 427 59830 115190 0.140 1.64 25.67 0.84 0.29
cup 44 2241 6750 0.453 2.47 23.50 0.60 0.49
donut 403 52964 103416 2.248 11.89 17.60 0.74 0.57
frisbee 339 35238 64092 0.738 3.75 22.34 0.43 0.66
hairdryer 378 44249 88180 0.022 0.16 25.84 0.82 0.33
handbag 406 54390 105616 0.273 2.32 26.51 0.89 0.26
hotdog 618 100797 202003 2.600 7.23 19.78 0.45 0.78
keyboard 375 42606 85350 1.596 7.04 18.54 0.46 0.60
kite 428 60143 116852 0.029 0.36 18.01 0.30 0.74
laptop 378 44295 88252 1.128 7.92 15.04 0.36 0.59
microwave 504 72519 140728 0.023 0.45 21.17 0.61 0.42
motorcycle 367 39692 77422 0.006 0.14 26.52 0.78 0.30
parkingmeter 483 69196 135585 0.136 2.48 17.24 0.56 0.56
pizza 372 41288 82251 0.036 0.26 27.70 0.69 0.42
sandwich 366 39376 76719 0.411 1.67 19.74 0.53 0.51
stopsign 617 99969 199015 3.229 13.81 13.99 0.40 0.72
toilet 605 94579 188112 0.252 5.48 18.53 0.69 0.41
toybus 273 29204 56363 0.057 0.40 23.34 0.65 0.60
toyplane 405 53880 105088 0.020 0.12 22.20 0.53 0.53
tv 48 2742 8095 0.097 0.81 26.32 0.81 0.39
umbrella 191 20630 39388 1.115 5.73 17.35 0.44 0.60
vase 374 41862 83720 0.100 1.27 29.25 0.85 0.28
wineglass 401 51903 101703 1.191 7.80 21.43 0.58 0.53
Avg 0.778 4.21 20.57 0.57 0.53

Table 4. Per-scene performance of ICON on other 33 categories in
CO3D full-scene evaluation.

camera poses are removed when we sample scenes.
We report camera pose quality following prior

works [15] using Relative Pose Error (RPE) on rotation and
Absolute Trajectory Error (ATE (m)) for translation. We
follow [15] to not use ATErot because some trajectories
in ScanNet has very small translation and aligning the
trajectory then evaluate rotation may not be reliable.

We do not change any (hyper-)parameters used in CO3D
full scene training for ICON to stress test the system on
the significantly different scenarios in ScanNet. We in-
clude four methods designed to work well on ScanNet
for comparison: TartanVO [13], COLMAP [9], DROID-
SLAM [11] and current state-of-the-art method Parti-
cleSfM [15]. We note that COLMAP and ParticleSfM may
fail to perform well when running only on the short clip, so
we run them on the entire video and report the results on the
clip. In addition, as noted in [15], since COLMAP often fail

Figure 1. Scenes where ICON produces larger errors. ICON
mainly suffer from scenes where photometric loss produces incon-
sistent supervisions. The car example consists of moving human
shadow and reflective surface on the car. The wineglass exam-
ple contains transparent surface and light reflections. The donut
example contains inconsistent lighting, where the flash from the
camera generates brighter color in the front and darken the back
part. These inconsistencies in different viewpoints cause ICON to
produce imprecise camera poses.

on many ScanNet scenes, we use a tuned version following
[12].

We report results in Tab 5. Despite having no tuning
or change when transferring from CO3D, ICON achieves
strong performance on ScanNet compared to the state-of-
the-art methods designed to work well on ScanNet style
videos. We believe this is a proof-of-concept that ICON
can be generalized and adapted to other types of videos.



TartanVO DROID COLMAP ParticleSfM ICON
RPE(degree) 1.41 0.56 0.67 0.34 0.47
ATE(m) 0.198 0.066 0.091 0.053 0.092

Table 5. Camera pose evaluation on ScanNet. Despite not opti-
mized for ScanNet scenarios, ICON achieves competitive perfor-
mance, ranking the second on RPE and third on ATE. The dif-
ference between ICON and state-of-the-art method is very small
(0.13 degree on rotation and 0.039m on translation)

6. Limitations and future directions

While ICON achieves strong performance to jointly op-
timize poses and NeRF, it has a few limitations. First,
ICON strongly relies on photometric loss as supervision
for both NeRF and poses. This relies on the assumption
that the color is moderately consistent across different view-
points. However, this assumption may break in real-world.
Although ICON uses confidence to down-weight volumes
with inconsistent photometric loss, it will produce impre-
cise poses (5 to 10 degree rotation error) due to the ambi-
guity. As shown in Tab 4 and Fig 1, ICON suffers from
motion, reflective surfaces, transparency and strong light-
ing change. We believe leveraging features robust to these
changes, such as DINO [3], may help alleviate this issue.

In addition, ICON depends on gradient-based optimiza-
tion through NeRF [7], which takes hours to train. We
believe that combining ICON with more efficient model-
ing of 3-space will be a promising direction, such as Pixel-
NeRF [14] and FLOW-CAM [10].
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