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In the supplementary material, we first introduce more
implementation details of visual foundation models ex-
ploited in our experiments in Sec 1. Then in Sec 2 we con-
duct expanded comparative analyses between the proposed
RIM and a line of methodologies on different datasets. Fi-
nally, we show more qualitative results of our method in
Sec 3.

1. More Implementation Details
Details about image generation. To construct the intra-
modal reference features, we resort to the Stable Diffu-
sion [8] model to generate K = 50 images for each candi-
date category. We employ 50 denoising steps for reference
image generation.

Details about prompt sampling. To avoid the concen-
tration of multiple prompt points in a smaller area, which
results in SAM only segmenting a part of the foreground,
we follow [5] to employ a distance transform algorithm
to uniformly sample prompt points on the binarized cross-
attention map. In particular, we identify the points that
are maximally distant from both the edge of the binarized
cross-attention map and each other as the prompt points
as described in Algorithm 1. Then we input these prompt
points into SAM to facilitate the segmentation of the com-
plete foreground in the synthesized image.

Details about mask proposals generation. SAM tends
to generate multiple corresponding mask proposals from a
single prompt point, and these mask proposals may exhibit
hierarchical relationships, such as “T-shirt” and “person”.
To acquire more complete masks for instances, we perform
a mask fusing on the mask proposals generated by SAM.
Specifically, we merge two mask proposals M1 and M2 if

Area(M1 ∩M2)

min(Area(M1),Area(M2)
> 0.9, (1)

where the Area means the measure of the area of a mask
*Equal contribution
†Corresponding author

Algorithm 1 The Process of Prompt Points Sampling

Input: The binarized cross-attention map M , number of
prompt points N to sample. Set X represents the lo-
cations of foreground pixels, and the set L contain-
ing both background pixel locations (B) and sampled
prompt points (P);

Output: Set of positions of prompt points P = {pi}Nn=1;
1: Initializing the set P = {};
2: for n in {1, 2, . . . , N} do
3: Calculating the distance transform between loca-

tions y ∈ L and a specific foreground location x ∈ X:

D(x) = min
y∈L

∥x− y∥2 ;

4: Selecting the furthest distance p∗:

p∗ = argmax
x

D(x);

5: Updating P = P ∪ {p∗}, L = B ∪ P , and getting
the prompt point at location p∗;

6: end for
7: return P

proposal. Mask fusing can prevent overly fragmented mask
proposals from impacting the performance of region classi-
fication.

2. Expanded Comparative Analyses
We compared the proposed RIM with another line of
methods trained using more detailed instance-level anno-
tations on three additional datasets with more categories,
i.e. ADE20K-847 [14], ADE20K-150 [14], Pascal Context-
459 [6]. Among them, ADE20K-150 is a large-scale scene
understanding dataset with a total of 150 annotated cate-
gories. ADE20K-847 has the same images as ADE20K-150
but encompasses a broader spectrum of annotated classes
(847 classes in total), which is the most challenging dataset
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Training Supervision mIoU
Method Dataset label mask caption A-847 PC-459 A-150 PC-59 PAS-21 COCO

SPNet[9] Pascal VOC ✓ ✓ - - - 24.3 18.3 -
ZS3Net[1] Pascal VOC ✓ ✓ - - - 19.4 38.3 -
LSeg[4] Pascal VOC ✓ ✓ - - - - 47.4 -
SimBaseline[12] COCO ✓ ✓ - - 15.3 - 74.5 -
ZegFormer[2] COCO ✓ ✓ - - 16.4 - 73.3 -
LSeg+[3] COCO ✓ ✓ 3.8 7.8 18.0 46.5 - 55.1
MaskCLIP[15] COCO ✓ ✓ 8.2 10.0 23.7 45.9 - -
OSIDE [11] COCO ✓ ✓ 11.1 14.5 29.9 57.3 84.6 65.2
SAN [13] COCO ✓ ✓ 10.1 12.6 27.5 53.8 94.0 -

GroupViT[10] GCC+YFCC ✓ 4.3 4.9 10.6 25.9 50.7 21.1
OpenSeg[3] COCO ✓ ✓ 6.3 9.0 21.1 42.1 - 36.1
OSIDE [11] COCO ✓ ✓ 11.0 13.8 28.7 55.3 82.7 52.4

RIM(Ours) Training-free 6.1 7.8 17.0 34.3 77.8 44.9

Table 1. Open-vocabulary semantic segmentation performance comparison between the proposed training-free RIM and a line of works
trained on the COCO dataset, which shares high lable-set similarity with the validation datasets

.

Dataset Label Sim. to COCO Stuff
ADE20K-847 0.57

Pascal Context-459 0.70
ADE20K-150 0.73

Pascal Context-59 0.86
Pascal VOC 0.91

Table 2. The label-set similarity between validation datasets and
training set (i.e. COCO Stuff). Measured by Hausdorff distance
and cosine similarity based on CLIP text encoder.

for open-vocabulary semantic segmentation. Similarly, Pas-
cal Context-459 has the same image set as Pascal Context-
59 but far more annotated classes (459 classes in total).

We conduct an analysis of the relationships between the
datasets following SAN [13] by computing the category
similarity between other datasets and the training dataset of
other methods in Table 2, i.e., COCO Stuff. The similari-
ties are computed with the Hausdorff Distance, and the text
embedding of each concept is extracted from pre-trained
CLIP [7] text encoder with ViT-L/14 and cosine similar-
ity is employed for pairwise similarity computing. It can be
observed from Table 2 that these datasets exhibit a high de-
gree of similarity with the COCO dataset. This implies that
methods trained on COCO utilizing detailed instance-level
annotations are likely to achieve better performance due to
the increased volume of annotation information as shown in
Table 1. However, this also correspondingly escalates the
training costs to some extent. Our proposed training-free
RIM outperforms many methods trained on COCO with
pixel-level annotations, demonstrating the open-vocabulary
segmentation capabilities of our approach.

Figure 1. Qualitative results of our method on different datasets.

3. More Visualizations

As illustrated in Figure 1, the visualization of the predic-
tions illustrates that our method enables meticulous concept
mining and precise region classification.
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