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Abstract

In the main paper, we have proposed the depth feature
upsampling network (DFU), a plug-and-play module to im-
prove existing methods based on the encoder-decoder net-
work (ED-Net). In this supplementary material, we first in-
troduce our motivation in more detail. Then, we provide
addtional experiments on multi-branch networks, details of
improving LRRU, etc. Following the main paper, the feature
is marked as fi, where fi denotes the feature of different
resolutions, namely fi ∈ RH/n×W/n×Di , n = 2i−1.

1. More details on motivation

The Encoder-Decoder network with skip-connection (ED-
Net) is a popular framework for depth completion, but its
working is ambiguous as pointed out by R2. In this paper,
we visualize the inside activation maps to help us under-
stand the learned features and how the network processes
input data. As shown in Fig. 1 (a), we found that the en-
coder features fei of ED-Net focus on the areas with input
depth points around. Therefore, to obtain a dense feature
and thus estimate complete depth, the decoder feature fdi,
which is skip-connected to fei, tends to complement and en-
hance existing fei to make the fused encoder-decoder fea-
ture fedi dense, resulting in the decoder feature fdi exhibits
sparse. However, existing ED-Nets obtain the sparse fdi
from the dense fed(i+1) at the previous stage, where the
“dense⇒sparse” process will lose partial information of
established dense features at multiple scales.

Inspired by the visualization, we propose a small plug-
and-play module, DFU containing only 1.67M, to improve
existing ED-Nets, which explicitly utilizes these dense fea-
tures fedi before being destroyed. Fig. 1 (b) and (c) show
that the completeness of features is maintained regardless of
whether DFU uses the basic addition or sophisticated CGM
(proposed in this paper) to fuse fedi (actually fedi will be
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Figure 1. Activation maps and results. Input depth is dilated for show.

downsampled by the channel to obtain the guidance fea-
ture fgi) and fddi. Moreover, the output feature of DFU is
denser and smoother. The quantitative results in Fig. 1 (on
KITTI) also verify the effectiveness of our method.

2. Experiments on multi-branch networks.

For the single-branch ED-Net, we have shown that the
encoder feature gradually aggregates from “sparse” to
“dense”, while the decoder feature at multi-scale tends to
complement the corresponding encoder feature, such as
in the areas that lack input depth information and object
boundary (more details in the “Introduction” section of the
main paper). To demonstrate that the multi-branch ED-
Net performs similarly to the single-branch ED-Net, we
conduct additional experiments on the representative ap-
proach GuideNet [5], which is based on the multi-branch
ED-Net. The network employed by GuideNet [5] consists
of an RGB-branch and a Depth-branch, which uses a whole
encoder-decoder sub-network. The RGB-branch extracts
RGB features at multiple scales frgbi. Then, these RGB
features are gradually injected into the Depth-branch to ef-
fectively integrate RGB and depth information by the pro-
posed guided convolutional network.

As shown in Fig. 2, we visualize intermediate features of
the GuideNet [5] through the feature heatmap [7]. We ob-
serve that the intermediate features of the RGB-branch have
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(b) The guided convolutional network can effectively transfer structural information from the RGB feature to 
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Figure 2. Typical method (GuideNet [5]) based on the multi-branch ED-Net and its intermediate features are visualized by the
heatmap [7]. Note that the encoder feature gradually aggregates from “sparse” to “dense”, while the decoder feature of the Depth-branch
at multi-scale fddi tends to complement the corresponding encoder feature f ′

dei, such as in the areas that lack input depth information and
object boundary.
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rich information in most spatial locations since the RGB
image is dense and the RGB-branch works independently.
However, the shallow feature of the Depth-branch, such as
fde2, primarily focuses on few regions where the sparse
depth map has values. Since the guided convolutional net-
work can effectively transfer structural information from the
RGB feature to the depth feature, the depth feature after the
feature fusion module based on the guided convolutional
network f ′

de2 has rich information in more spatial locations.
Then, through multiple downsampling and guided convolu-
tional networks, the feature f ′

dei becomes more “dense”.
However, like the single-branch EDNet, the decoder of

the multi-branch ED-Net also tends to obtain a complemen-
tary feature for the corresponding encoder feature, which
undergoes a “sparse⇒dense⇒sparse” procedure. For ex-
ample, the learned decoder feature fdd3 focuses more on the
areas that lack input depth information and object boundary,
which are not well considered by the corresponding encoder
feature f ′

de3. Then, a dense feature fed3 is obtained by fus-
ing the paired encoder and decoder feature. However, the
“dense” feature is utilized to obtain a “sparse” decoder fea-
ture fdd2 at the next stage, which destroys the completeness
of features and loses information.

3. Details of improving LRRU.
To verify the effectiveness of the proposed DFU for SPN-
based methods, we apply it to LRRU [6], which introduces
a flexible SPN model and achieves top-ranking performance
on the KITTI benchmark. LRRU explicitly employs inter-
mediate dense features of the guided-feature extraction net-
work to guide the SPN model. However, these features are
utilized individually, and the features at different scales can
not be aggregated to improve the robustness and effective-
ness of the SPN model. As shown in Fig. 3, we embed the
DFU between the guided-feature extraction network and the
recurrent update process of the LRRU to integrate the infor-
mation from the multi-scale guidance features.

In the training process of the improving LRRU, we first
load the pre-trained LRRU model provided by the authors
and use the same settings as LRRU. For the LRRU-Base
model, training the improving model by using one-layer
DFU with four 3090 GPUs requires five days.

4. Visualization of intermediate features of im-
proving ED-Net.

By visualizing the intermediate features of the model,
we have shown that the decoder of existing ED-
Nets tends to obtain a complementary feature for
the corresponding encoder feature, which undergoes a
“sparse⇒dense⇒sparse” procedure. Therefore, the in-
termediate dense features are not fully utilized by existing
ED-Nets, thereby restricting the performance of methods

based on such networks. To address this issue, we propose
a depth feature upsampling network (DFU) that effectively
utilizes these dense features to guide the upsampling of a
low-resolution (LR) depth feature to a high-resolution (HR)
one. As shown in Fig. 4, we observe that the completeness
of depth features is maintained throughout the upsampling
process, thus avoiding information loss.

5. Comparison with existing multi-scale guid-
ance methods.

The multi-scale guidance strategy has been widely studied
in existing multi-branch ED-Nets. These methods employ
two separate branches to extract features from RGB images
and sparse depth, respectively. Then, extracted RGB fea-
tures are used to guide the extraction process of depth fea-
tures in multiple scales. Unlike existing methods, we pro-
pose to effectively utilize intermediate dense features of the
pre-trained ED-Net to guide the upsampling of the depth
feature, where the intermediate dense features contain rich
information across most spatial locations. The benefits are
two-fold. First, we explicitly employ multi-scale intermedi-
ate dense features of the ED-Net whose completeness is de-
stroyed in existing methods, thus avoiding information loss.
Second, we propose a confidence-aware guidance module
(CGM) to fully exploit the potentiality of these dense fea-
tures as guidance. The features at different scales are ag-
gregated to improve the robustness and effectiveness of the
guidance process. In addition, the proposed network can be
extended to multi-layer to achieve better results.

6. Qualitative comparison with SOTA
In Fig. 5, we show the qualitative results on the KITTI
depth completion online benchmark, including CSPN [1],
NLSPN [4], DySPN [2], LRRU-Base [6], and improving
LRRU-Base model by using one-layer DFU. Our DFU ef-
fectively uses intermediate dense features of ED-Nets that
cover comprehensive scene depth information. Therefore,
the dense depth predicted by the improving LRRU-Base
model has better results in fine and small structures, such
as the gap area between two adjacent objects.

7. Evaluation metrics
Following exiting depth completion methods[2, 3], we em-
ploy the Root Mean Squared Error (RMSE[mm]), Mean
Absolute Error (MAE[mm]), Root Mean Squared Error of
the Inverse depth (iRMSE[1/ km]), Mean Absolute Error of
the Inverse depth (iMAE[1/km]), mean absolute relative er-
ror (REL), and percentage of pixels satisfying δτ for quan-
titative evaluation. Eq. (1) shows the detailed definitions,
where dgt denotes the ground truth depth map, dpred de-
notes the predicted dense depth map, and V is the set of
available points in the ground truth.
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heatmap [7]. The completeness of depth features is maintained throughout the upsampling process, thus avoiding information loss.
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Figure 5. Qualitative results on the KITTI depth completion online benchmark, including CSPN [1], NLSPN [4], DySPN [2], LRRU-
Base [6], and improving LRRU-Base model by using one-layer DFU. Some regions are zoomed-in for better visualization.
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