
Improving Plasticity in Online Continual Learning via Collaborative Learning

Supplementary Material

8. Extra Experiments
Impact of the number of augmentation stages in DC.
As mentioned in Sec. 4, DC comprises three augmentation
stages, including one geometric distortion stage and two
RandAugment stages. In this ablation study, we aim to in-
vestigate how more or less augmentation stages will impact
the final performance. In this experiment, we generalize the
number of augmentation stages in CCL-DC from 0 (which
is equivalent to CCL without DC) to N . For N � 1, we
apply one geometric distortion stage and N � 1 RandAug-
ment stages. As shown in Fig. 6, CCL-DC performs better
when the number of augmentation stages increases. How-
ever, the training time and memory footprint also increase
with more augmentation stages. Thus, for a trade-off, we
set the number of stages to 3 in the main paper.

T-SNE visualization. Another advantage of CCL-DC is
its ability to enhance the feature discrimination of continual
learners. Fig. 10 illustrates the t-SNE visualization of the
memory data’s embedding space at the end of the training.
We can see that the feature representation of the method
with CCL-DC is more discriminative compared with the
baseline.

Classification loss curve on other baselines. In Sec. 6,
we present the classification loss curve of the model during
training and illustrate how CCL-DC can assist the model in
descending deeper into the loss landscape. We present the
classification curve for the remaining baselines in Fig. 11.
With improved plasticity, for every baseline method, CCL-
DC can improve the training by descending deeper at the
end of each task.

Independent network performance. Although the en-
semble method gives extra performance at inference time,
by averaging the logit output of two networks in CCL-DC,
it also doubles the computation. In some cases, compu-
tational efficiency becomes more crucial during inference.
Continual learners trained with CCL-DC are also able to do
inference independently, albeit with a slight performance
drop compared with ensemble inference. Table 9 shows the
accuracy achieved through independent inference. It is ev-
ident that the performance loss in independent inference,
when compared to ensemble inference, is minimal (approx-
imately 1%).

Performance with NCM classifier. Besides t-SNE, we
can evaluate the feature discrimination using the clustering

Figure 6. The performance of ER incorporating CCL-DC with
varying numbers of augmentation stages on CIFAR-100 (M =2k).
All numbers are averaged over 10 runs.

Figure 7. GradCAM++ visualization on the training set of
ImageNet-100 (M =5k). Shortcut learning exists in the baseline
methods despite making correct predictions.

methods. We remove the final FC classifier and use Nearest-
Class-Mean (NCM) classifier with intermediate representa-
tions. Table 11 demonstrates that CCL-DC can greatly en-
hance the NCM accuracy, which evidences the capability of
CCL-DC in improving feature discrimination.

GradCAM++ visualization. Shortcut learning is another
commonly observed issue that hinders the generalization
capability of continual learners [44]. In Fig. 7, we use Grad-
CAM++ on the training set of ImageNet-100 (M =5k) at
the end of the training of ER and GSA. Although both ER
and GSA make correct predictions, we observed that they
focus on irrelevant objects, which indicates a tendency to-
ward shortcut learning. Also, we can see that by integrating
CCL-DC, the shortcut learning can be greatly alleviated.



Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER + Ours (Ind.) 65.66±2.35 73.37±1.70 32.97±1.06 43.58±1.05 52.96±1.16 16.32±1.58 28.68±1.20 37.14±0.93 41.82±1.54

ER + Ours (Ens.) 66.43±2.48 74.10±1.71 33.43±1.06 44.45±1.04 53.81±1.16 16.56±1.63 29.39±1.23 37.73±0.85 43.11±1.49

DER++ + Ours (Ind.) 68.15±1.40 73.56±1.12 33.81±0.90 42.79±1.38 52.04±0.81 11.11±1.53 21.47±1.93 27.37±2.64 44.22±1.25

DER++ + Ours (Ens.) 68.79±1.42 74.25±1.10 34.36±0.89 43.52±1.35 52.95±0.86 10.99±1.39 21.68±1.94 28.01±2.46 45.70±1.32

ER-ACE + Ours (Ind.) 69.35±1.24 74.86±1.06 36.34±1.08 44.15±1.05 52.94±0.44 17.99±1.56 25.69±2.00 31.69±1.69 43.92±1.71

ER-ACE + Ours (Ens.) 70.08±1.38 75.56±1.14 37.20±1.15 45.14±1.00 53.92±0.48 18.32±1.49 26.22±2.01 32.23±1.70 45.15±1.94

OCM + Ours (Ind.) 73.00±0.88 76.66±1.38 34.02±1.22 42.39±1.36 50.19±1.36 22.53±1.28 32.16±0.96 38.02±0.94 41.71±1.07

OCM + Ours (Ens.) 74.14±0.85 77.66±1.46 35.00±1.15 43.34±1.51 51.43±1.37 23.36±1.18 33.17±0.97 39.25±0.88 43.19±0.98

GSA + Ours (Ind.) 68.10±1.58 74.78±1.27 35.14±1.40 43.84±1.34 54.29±1.10 16.53±1.62 27.57±1.61 36.12±1.59 43.27±1.05

GSA + Ours (Ens.) 68.91±1.68 75.78±1.16 35.56±1.39 44.74±1.32 55.39±1.09 16.70±1.66 28.11±1.70 37.13±1.75 44.28±1.16

OnPro + Ours (Ind.) 73.65±2.16 77.84±1.33 34.20±1.12 41.18±0.83 49.18±0.81 21.22±1.05 31.13±0.71 37.30±0.93 46.84±1.33

OnPro + Ours (Ens.) 74.49±2.14 78.64±1.42 34.76±1.12 41.89±0.82 50.01±0.85 21.81±1.02 32.00±0.72 38.18±1.02 47.93±1.26

Table 9. Comparison of the final average accuracy achieved through independent inference and the use of the ensemble method on four
benchmark datasets with difference memory buffer size M . All values are averages of 10 runs.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 33.16±3.50 20.94±6.79 32.65±1.78 22.20±2.26 13.29±1.98 58.38±1.69 46.87±1.60 40.77±2.45 23.38±2.10

ER + Ours 30.22±3.75 19.85±2.55 43.28±1.67 29.35±1.50 16.88±1.99 69.56±1.54 53.13±0.85 42.63±0.80 28.48±1.50

DER++ 24.21±2.75 18.42±1.84 34.49±4.39 25.55±3.26 20.01±2.88 62.03±2.83 51.57±4.60 49.51±3.04 28.77±4.10

DER++ + Ours 25.08±2.88 18.47±3.12 42.76±1.31 31.13±2.41 18.45±2.89 72.59±1.29 57.71±1.80 50.31±2.34 27.22±2.17

ER-ACE 12.72±3.56 10.66±2.48 12.67±1.62 9.11±0.78 5.92±1.09 19.12±0.63 17.14±0.67 15.59±1.24 14.11±1.19

ER-ACE + Ours 22.86±2.23 16.07±2.38 35.85±1.12 25.84±1.96 14.21±0.85 24.10±2.00 19.14±1.91 15.14±1.60 26.02±2.33

OCM 13.68±4.25 11.63±2.62 14.99±1.55 9.16±1.75 3.76±1.16 26.12±1.63 19.74±1.30 15.92±1.47 3.25±0.90

OCM + Ours 11.59±2.24 9.18±2.03 16.69±2.36 10.07±1.37 3.99±0.78 26.16±1.90 19.99±1.96 15.56±1.06 8.91±1.18

GSA 25.45±2.86 16.42±3.59 33.97±2.55 22.74±1.83 12.31±2.35 27.23±2.01 23.61±2.26 20.58±2.09 24.53±1.59

GSA + Ours 28.47±3.08 19.00±2.08 42.41±1.44 31.09±1.86 16.77±1.87 64.86±1.19 48.23±1.28 35.79±1.46 32.77±2.07

OnPro 17.94±3.69 14.20±2.60 16.76±2.47 12.42±1.39 6.72±0.94 28.01±1.59 23.52±1.75 20.32±1.70 7.59±1.17

OnPro + Ours 19.89±4.01 14.62±2.75 28.93±2.19 20.23±1.03 10.55±1.89 28.21±1.58 20.86±1.13 16.17±0.63 9.90±1.93

Table 10. Forgetting Measure (%, lower is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Method NCM Acc. ↑ Logit Acc. ↑

ER 36.56±0.60 31.89±1.45

ER + Ours 44.76±0.55 44.45±1.04

ER-ACE 34.91±1.02 34.21±1.53

ER-ACE + Ours 45.62±1.04 45.14±1.00

OnPro 34.32±0.95 33.33±0.93

OnPro + Ours 42.82±0.67 41.89±0.82

Table 11. Final average accuracy on CIFAR-100 (M =2k), with
and without NCM classifier.

9. Counterintuitive performance of ER-ACE

As shown in Table 4, ER-ACE suffers from counterintuitive
performance on plasticity, especially when the task number
is large (e.g., TinyImageNet experiments). This is because
ER-ACE employs Asymmetric Cross-Entropy loss (ACE)
during the training of batch images. ACE manually masks

out the old classes for batch image training, which reduces
the feature drift of old classes and enhances ER-ACE’s sta-
bility, as stated in the original paper. However, ACE cuts
the gradient for old classes in classification loss, which lim-
its the optimizer’s maneuverability in the final classifica-
tion layer. This loss of maneuverability is significant when
there are many tasks involved, and thus we may observe
the LA close to 0 in the later stages of training. Despite
the low plasticity, ER-ACE has a good overall performance
because: (1) Memory replay partially compensates for this
loss in terms of plasticity (Learner can still learn from sam-
ples in the memory buffer), and (2) ER-ACE has higher sta-
bility. Additionally, we witness a major stability drop in
ER-ACE when incorporating CCL-DC. As indicated in the
Algorithm 1, although we also use ACE in the classification
loss of DC, we do not perform masking in the distillation
loss. The distillation between probability distributions of



peer models retrieves some plasticity, but it also leads to
extra feature drift, which hurts the stability to some extent.

10. Experiment Details
Dataset As mentioned in Sec. 5, we use four datasets
to evaluate the effectiveness of our method. The original
datasets are split into several tasks of disjoint classes. The
detailed information about dataset split and task allocation
is as follows:
CIFAR-10 [25] has 10 classes with 50,000 training samples
and 10,000 test samples. Images are sized at 32⇥32. In our
experiments, it is split into five non-overlapping tasks with
two classes per task.
CIFAR-100 [25] has 100 classes with 50,000 training sam-
ples and 10,000 test samples. The images are 32 ⇥ 32 in
size. It is split into 10 disjoint tasks with 10 classes per
task.
TinyImageNet [26] has 200 classes with 100,000 train-
ing samples and 10,000 test samples. Images are sized at
64⇥ 64. It is split into 100 non-overlapping tasks with two
classes per task.
ImageNet-100 [22] is the subset of ImageNet-1k [15] con-
taining 100 classes. We follow [11] for the class selection.
The images are 224⇥ 224 in size. It is split into 10 disjoint
tasks with 10 classes per task.

Task Sequence. In online CL, some work uses a fixed
task sequence throughout all runs to evaluate the perfor-
mance, for the sake of fair comparison. However, we found
that the evaluation heavily depends on the task order. For
fair comparison, we randomize the allocation of classes to
tasks and the sequence of tasks using 10 fixed random seeds
(for 10 runs in our experiments). This ensures our evalua-
tion result is not biased to task difficulty.

Data augmentation for baseline methods. Data aug-
mentation has been demonstrated to be successful in im-
proving the performance of online CL [6, 19, 35]. How-
ever, methods benefit differently from different augmenta-
tion intensities, and some methods may gain more perfor-
mance with simple augmentations instead of complicated
ones. Thus, to achieve optimal performance for compar-
ison, we involve two different augmentation strategies for
baseline methods:
1. Partial augmentation strategy. The partial augmenta-
tion is a strategy with weak augmentation. It comprises ran-
dom cropping with p = 0.5, followed by random horizontal
flip with p = 0.5.
2. Full augmentation strategy. The full strategy is a su-
perset of the partial strategy. It consists of random cropping,
horizontal flipping, color jitter, and random grayscale. The

(a) Performance when M = 15 (b) Performance when N = 3

Figure 8. The impact of N and M in RandAugment on the perfor-
mance for ER + Ours on CIFAR-100 (M =2k). As shown in the
figure, the best performance is achieved with N = 3 and M = 15.
All numbers are averaged over 10 runs.

(a) Performance when �2 = 2 (b) Performance when �1 = 0.5

Figure 9. The impact of �1 and �2 on the performance for ER +
Ours on CIFAR-100 (M =2k). As shown in the figure, the best
performance is achieved with �1 = 0.5 and �2 = 2. All numbers
are averaged over 10 runs.

parameter of color jitter is set to (0.4, 0.4, 0.4, 0.1) with
p = 0.8, while the probability of random grayscale is 0.2.

For fair comparison, the models trained with CCL-DC
also employ the same data augmentation strategy in the
baseline loss part, as illustrated in Algorithm 1.

Hyperparameter search for baselines. For hyperparam-
eters in the baseline methods, as indicated in Sec. 5, we
perform a hyperparameter search on CIFAR-100 (M =2k)
for the baseline methods. Table 12 shows the exhaustive list
of the grid search. Note that we used the hyperparameters
from the original OCM paper to reduce the hyperparame-
ter search space due to computational constraints. For fair
comparison, after finding the optimal hyperparameters for
the baseline methods, we apply the same hyperparameters
when incorporating CCL-DC.

Hyperparameter search for CCL-DC. CCL-DC also
has four unique hyperparameters, including N , M in Ran-
dAugment of DC, and �1, �2 in Eq. 9 and Eq. 10.

In CCL-DC, we use RandAugment to generate sam-
ples with different difficulty. Thus, two additional hyper-
parameters in RandAugment (N and M ) are involved in
CCL-DC. Since the transformation intensity (N and M ) is
highly related to the dataset instead of the baseline method,



We conduct a hyperparameter search for every dataset
with ER + CCL-DC and apply the same hyperparameter
across all baseline methods when incorporating CCL-DC.
We searched in 4 settings of N and 7 settings of M (i.e.,
N = {1, 2, 3, 4} and M = {5, 7, 9, 11, 13, 15, 17}). With
our grid search, we find that (N = 3,M = 15) is the best
for CIFAR-10 and CIFAR-100. (N = 1,M = 11) achieves
the best results on Tiny-ImageNet and (N = 3,M = 11) is
the best for ImageNet-100. We also visualize some of the
experimental results on CIFAR-100, as shown in Fig. 8.

CCL-DC also comprises two hyperparameters �1 and �2

in Eq. 9 and Eq. 10. Similar to the hyperparameter search
strategy we do for baseline hyperparameters, for each base-
line method with CCL-DC, we initiate another hyperparam-
eter search for �1 and �2 on CIFAR-100 (M =2k) and ap-
ply the hyperparameter to all of the settings. We searched
from �1,�2 = {0.25, 0.5, 1, 2, 4, 8}. We visualize some ex-
perimental results in Fig 9.

Hardware and Computation. All the experiments in our
work are conducted on NVIDIA A100 GPUs. Fig. 12 shows
the training time for each method with and without CCL-
DC on CIFAR-100 (M =2k).



(a) ER (b) ER + Ours (c) DER++ (d) DER++ + Ours

(e) ER-ACE (f) ER-ACE + Ours (g) OCM (h) OCM + Ours

(i) GSA (j) GSA + Ours (k) OnPro (l) OnPro + Ours
Figure 10. T-SNE visualization of memory data at the end of training on CIFAR-100 (M =2k).

Figure 11. Classification loss curve on CIFAR-100 (M =2k). The curve is calculated on all training samples of the current task. Since
there are 10 tasks in total, the curve has 10 peaks.



Method HP Values

ER

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

DER++

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]
alpha [0.1, 0.2, 0.5, 1.0]
beta [0.5, 1.0]

ER-ACE

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OCM

optimizer [AdamW]
lr [0.001]

weight decay [1e-4]
aug. strat. [partial, full]

GSA

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OnPro

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

Table 12. Exhaustive list of hyperparameters searched on CIFAR-100 (M =2k).

Figure 12. Training time of each method on CIFAR-100 (M =2k).


	. Introduction
	. Related Work
	. Plasticity and Stability in online CL
	. Model Plasticity
	. Model Stability
	. Impact on the Overall Performance

	. Proposed Method
	. Motivation Justification
	. Collaborative Continual Learning
	. Distillation Chain
	. Apply CCL-DC to online CL methods

	. Experiments
	. Experimental Setup
	. Results and Analysis
	. Ablation Studies

	. Discussions
	. Conclusion
	. Extra Experiments
	. Counterintuitive performance of ER-ACE
	. Experiment Details

