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1. More Ablation Studies
We compare the proposed compatibility-inspired distilla-
tion against different output-level distillations [1, 3, 4] to
further show its advantage. As shown in Table 1, standard
knowledge distillation exhibits the poorest performance as
it does not correct for background shift. Both unbiased dis-
tillation and similarity transfer address the background shift
well, which results in consistent improvements. Our ap-
proach not only resolves the background shift but also fully
harnesses the knowledge pre-trained by the old model for
the future, thus achieving the best performance.

Distillation loss Old New Mean

Knowledge Distillation [3] 63.12 75.80 66.29
Unbiased Distillation [1] 68.01 77.43 70.36
Similarity Transfer [4] 68.55 77.52 70.79
Ours 70.46 78.03 72.36

Table 1. Comparison of compatibility-inspired distillation against
different output-level incremental techniques on MoNuSAC 3-1.

2. More Hyper Parameter Analysis
Different Weights for Local POD Loss. The impact of
multi-scale pooling distillation loss Lpod [2] depends on the
selection of the weight λ. A high λ will hinder the model

Dataset λ
1-1 2-1

MoNuSAC

Old New Mean Old New Mean

0.1 69.85 63.69 65.23 66.70 70.30 68.50
0.01 68.98 66.42 67.06 65.03 73.87 69.45

0.001 68.50 68.63 68.60 64.87 75.23 70.05
0.0001 68.11 69.86 69.44 63.79 76.53 70.16

0.00001 67.81 68.91 68.44 61.03 77.21 69.12

CoNSeP

0.1 68.61 65.11 66.27 75.92 56.51 69.45
0.01 68.05 67.87 67.93 75.11 59.66 69.96

0.001 67.34 69.01 68.45 74.69 62.33 70.57
0.0001 66.64 70.84 69.44 74.29 64.65 71.08

0.00001 65.10 70.89 68.96 72.91 65.10 70.30

Table 2. Statistical analysis of different λ applied on MoNuSAC
and CoNSeP datasets.

from learning new classes, while a small λ causes the model
to lose constraints on features. Table 2 shows our parame-

ter selection on different λ. We can see that, while the λ is
set to 0.0001, our method achieves the best performance on
both 1-1 and 3-1 settings.
Different Thresholds for Future-class Awareness. The
choice of τu, whether high or low, will impact the model’s
determination of future classes and consequently affect the
quality of learned features. As shown in Table 3, the
suitable threshold for our module performing future-class
awareness is 0.8.

Dataset τu 1-1 2-1 2-2 3-1 Average

MoNuSAC

0 64.23 66.70 66.31 68.97 66.55
0.6 68.32 68.44 70.34 70.36 69.36
0.7 69.14 70.06 71.28 72.42 70.72
0.8 69.44 70.16 71.32 72.36 70.82
0.9 68.98 70.11 71.07 71.97 70.53

CoNSeP

0 67.54 69.38 - - 68.46
0.6 68.92 68.03 - - 68.47
0.7 68.98 70.85 - - 69.91
0.8 69.44 71.08 - - 70.26
0.9 69.03 70.11 - - 69.57

Table 3. Statistical analysis of different thresholds τu applied on
MoNuSAC and CoNSeP datasets.

3. Appendix of Endpoints Weight Fusion
Taking the final model θold from the previous incremental
step as the starting point and the new model θnew as the
endpoint, the parameter fusion is then carried out using the
following formula:

θnew = αtθnew + (1− αt)θold

αt =

√
Nnew

Nold

where the number of old classes Nold and new classes
Nnew reflect the contributions of the old model and the new
model, respectively.

4. More Visualizations
As shown in Figure 1 and Figure 2, we provide more
visual comparisons with more incremental segmentation
methods including EWF [6], IDEC [7], CoNuSeg [5], RE-
MINDER [4] and MiB [1], which further proves the superi-
ority of our proposed method for achieving a better balance
between stability and plasticity.



Figure 1. More visual comparisons with different state-of-the-art methods in incremental nuclei image segmentation.

Figure 2. More visualizations of our method and EWF at different incremental steps on MoNuSAC 1-1.
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