
InstanceDiffusion: Instance-level Control for Image Generation

Supplementary Material

A1. Preliminary
Diffusion Models [22, 52, 54] learn the process of text-to-
image generation through iterative denoising steps initiated
from an initial random noise map, denoted as zT . Latent
diffusion models (LDMs) [47] perform the diffusion pro-
cess in the latent space of a Variational AutoEncoder [30],
for computational efficiency, and encode the textual inputs
as feature vectors from pretrained language models [42, 43].

Specifically, starting from a noised latent vector zt at the
time step t, a denoising autoencoder [47, 49], denoted as ϵθ,
is trained to predict the noise ϵ that is added to the latent
vector z, conditioned on the text prompt c. The training
objective is defined as:

L = Ez∼E(x),ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, τ(c))||22

]
, (5)

where t is uniformly sampled from the set of time steps
{1, ..., T}. τ pre-process the text prompt c into text tokens
τ(c), utilizing the pretrained CLIP text model [42].

During inference, a latent vector zT , sampled from a
standard normal distribution N (0, 1) is iterative denoised
using DDIM [53] to obtain z0. Finally, the latent vector z0
is input into the decoder of VAE to generate an image x̃.

A2. Ablation Study
In addition to the ablation study we presented in § 4.3, in
this section, we also offer additional ablations focusing on
the hyper-parameters of UniFusion modules, design varia-
tions for ScaleU, the impact of model inference with hybrid
inputs, among other aspects.

Bandwidth → 4 8 16 32

APbox
50 50.8 53.9 55.4 55.3

(a) freq. bandwidth

N → 512 2048 3072 4096

APbox
50 52.9 53.5 55.4 55.4

(b) MLP dim

Table A1. Ablating design choices for UniFusion. Components
and default settings are highlighted in gray. (a) We vary the fre-
quency bandwidth used in the Fourier embeddings of the point
coordinates in the UniFusion block. (b) We study the impact of
the dimensionality of MLP layers in the UniFusion block.

Design choices for UniFusion. We first analyze the impact
of frequency bandwidths when projecting location condi-
tions into a higher-dimensional feature space with Fourier
Transform, as depicted in Table A1a. The Fourier trans-
form process empowers a multilayer perceptron (MLP) to
grasp high-frequency functions in low-dimensional prob-
lem domains [56]. We apply the Fourier mapping to the 2D
point coordinates associated with each location to convert

them into an embedding. The embedding enables MLPs to
better learn a high-frequency function for the coordinates.
Notably, expanding the frequency bandwidth tends to im-
prove the performance, but a plateau is reached once the
bandwidth exceeds 16. The influence of the dimensional-
ity (N) of the MLP layer within UniFusion is assessed in
Table A1b. We find that a dimension of 3072 emerges as
the optimal balance between model efficacy and its size.
Increasing the MLP layers dimensions from 3072 to 4096
does not yield further improvements in performance. There-
fore, we select N=3072 by default.
Can we use one single token for all location conditions?
Actually, we can still achieve reasonable performance using
a unified tokenization function that results in a single token
for all forms of location inputs, as demonstrated in Table 5.
However, having multiple tokens (M tokens) for different
input types (M types) leads to optimal performance. This
is because these four types of layout conditions necessi-
tate distinct approaches to ensuring that the model respects
the layout condition appropriately. Specifically, the model
needs to disseminate grounding information to adjacent vi-
sual tokens when using point and scribble inputs. In con-
trast, bounding-box and mask conditions require the model
to confine the grounding information injection within the
specified box or mask.
Why not employ masks as extra channels, as seen in GLI-
GEN [34] and ControlNet [65]? In these approaches,
the semantic segmentation masks (do not discriminate in-
stances in the same class) are resized to a smaller resolution
of 64× 64 features. Nonetheless, our observations indicate
that when the occlusion ratio between instances is high, par-
ticularly in cases where overlapping instances carry similar
semantic information, the model’s performance is compro-
mised a lot. Additionally, the model encounters difficulties
when generating high-quality results for very small objects.
Therefore, we convert all masks into point-based inputs.
However, it is possible that adding segmentation masks as
additional input could further improve our model’s perfor-
mance, we leave it for future research.

Versions → FreeU [51] ScaleU SE-ScaleU

APbox
50 52.2 55.4 55.2

Table A2. We evaluate the performance of the lightweight ScaleU
(Figure A1 b) against the dynamically adaptable SE-ScaleU (Fig-
ure A1 c), and further compare our ScaleU with FreeU [51], a
previous work that manually tune the scaling vectors.

Design choices for ScaleU are depicted in Figure A1. Be-
yond the standard ScaleU block described in § 3.3, which

Fb

Fs

Fb Fs

skip connection

Fb

Fs

F’b F’s

RCb×H×W

RCs×H×W

RCb×H×W

RCs×H×W

RCb×1×1

Ss

RCs×1×1

Sb

FFT
IFFT

a) Skip Connection b) Skip Connection w/ ScaleU

Fb

RCb×H×W

FC

S
iLU

FC

Tanh + 1

P
ooling

RCb×1×1
Sb

F’b F’s

Fs

RCs×H×W

FC

S
iLU

FC

Tanh + 1

P
ooling

Ss

RCs×1×1

c) Skip Connection w/ SE-ScaleU

Figure A1. Various design choices for the ScaleU block. In the UNet architecture, Fb represents the main features, while Fs denotes the
skip connected features. Typically, UNet employs skip connections as shown in (a) to pass features from the encoder to the decoder, aiding
in recovering spatial information lost in downsampling. We introduce ScaleU (b), which re-calibrates both the main and skip-connected
features prior to their concatenation. Additionally, we implement SE-ScaleU (c), which utilizes an MLP layer—akin to the Squeeze-and-
Excitation module [23]—to dynamically produce scaling vectors conditioned on each sample’s feature map.

re-calibrates both main and skip-connected features before
their concatenation in the UNet model, we explored an al-
ternative design, SE-ScaleU (Figure A1c). This variant em-
ploys an MLP layer, similar to the Squeeze-and-Excitation
module [23], for dynamically generating scaling vectors
based on each sample’s feature map. However, as demon-
strated in Table 6a, while SE-ScaleU offers performance
on par with the light-weight ScaleU block, it requires ad-
ditional parameters in the MLP layers. Consequently, we
default to using ScaleU.

crop-and-paste latents averaging

FID 24.3 23.9
APmask

50 49.1 50.0

Table A3. Model inference with Multi-instance Sampler using
different Multi-instance Sampler design variations.

Design choices for Multi-instance Sampler. There are
two design strategies for Multi-instance Sampler: crop-and-
paste and instance latents averaging, with the latter being
our paper’s default approach. The crop-and-paste Multi-
instance Sampler involves: 1) Running separate denois-
ing operations for each of the n instances over M steps
to obtain instance latents LI . 2) Cropping instance latents
{L1

I , · · · , Ln
I } as per location conditions and pasting these

cropped, denoised latents onto the global latent LG, derived
from all instance tokens and text prompts, at their respective
locations. 3) Continuing the denoising process on the com-
bined latent from step (2) using all instance tokens, instance
text prompts, and the global image prompt. This process
largely mirrors our default latent averaging Multi-instance
Sampler, except for step (2)’s latent merging method.

While crop-and-paste Multi-instance Sampler matches
or slightly surpasses the performance of our default aver-
aging approach on some testing cases, it has its limitations:
1) In step (2) of the crop-and-paste Multi-instance Sampler,

the model needs to crop instance latents according to the
bounding box or mask provided, limiting its application to
bounding boxes, and instance masks. For point inputs and
scribbles, the model has to conjecture the size/shape of the
instance. 2) The presence of overlapping instances presents
a challenge. The model can only preserve latents from a
single instance in these regions, resulting in blurred and
diminished-quality pixels in areas of instance overlap.

box point mask APbox APbox
50 point box mask PiM

✓ ✗ ✗ 36.1 52.4 ✓ ✗ ✗ 79.7
✓ ✓ ✗ 38.8 55.4 ✓ ✓ ✗ 85.6
✓ ✓ ✓ 44.6 59.6 ✓ ✓ ✓ 86.0

mask box point APmask APmask
50 scribble box mask PiM

✓ ✗ ✗ 13.6 27.3 ✓ ✗ ✗ 72.4
✓ ✓ ✗ 20.9 40.9 ✓ ✓ ✗ 74.8
✓ ✓ ✓ 24.6 50.0 ✓ ✓ ✓ 82.9

Table A4. Model inference with hybrid location inputs. We
found that hybrid inputs can often help the model to better respect
the location conditions and lead to performance gains. Default
inference setting is colored in gray. Note: Given a box, one can
always determine a point by using its center. Similarly, from a
mask, both a box and a central point can be derived without the
need for extra user inputs.

Multiple location formats at inference are analyzed in Ta-
ble A4. It is observed that having more location conditions
provides the best performance and more precise control on
the instance location. This results in significant perfor-
mance improvements, particularly for instance masks (9.9%
APmask) and scribble (16.3% PiM). Note that many of the
other location formats can be automatically derived: For
image generation conditioned on instance masks, since both
the box and the central point can be inferred from the mask,
our model enjoys this performance improvement without

Image Caption:
Knitted bear in a garden with flowers
chrysanthemums. Floral background.
Instance Captions:
- a small crocheted bear sits on top of

yellow sunflowers
- sunflower
- yellow sunflower in a garden
- a close up of yellow sunflowers

0.1 0.75

Figure A2. As the UniFusion module is integrated for an increasing proportion of timesteps (from 5% timesteps to 75% timesteps), the
model’s adherence to the instance conditions progressively improves. The generation of the sunflower at the top left corner occurs once the
UniFusion module is activated for 75% of the total timesteps.

imposing extra demands on users; Likewise, for boxes, the
performance gains achieved by incorporating a point as the
instance location condition can be obtained without any ad-
ditional user inputs. These derived location formats im-
prove location conditioning without additional user inputs.
Impact of UniFusion module. Figure A2 illustrates that
as the UniFusion module is applied over a increasing per-
centage of timesteps (ranging from 10% to 75%), the
model’s adherence to the instance conditions progressively
improves. For instance, the sunflower in the top left cor-
ner is generated only when the UniFusion module is active
for 75% of the total timesteps. Similarly, the sunflower in
the bottom right corner manifests after the module has been
active for 25% of the timesteps. Additionally, the model’s
ability to accurately adhere to the teddy bear’s location con-
dition is enhanced as UniFusion is utilized for more ex-
tended timesteps.

A3. Model Training
Model training. We follow the same setup as GLI-
GEN [34] and initialize our model with a pretrained text-
to-image model whose layers are kept frozen. We add the
learnable parameters for instance conditioning and train the
model with a batch size of 512 for 100K steps. We use the
Adam optimizer [29] with a learning rate that is warmed up
to 0.0001 after 5000 iterations. We learn the model with
exponential moving average (EMA) on model parameters
with a decay factor of 0.99 and use the EMA model during
the inference time. In addition, we have a 10% probabil-
ity to set all four location inputs as null tokens to support
classifier-free guidance, following the approach proposed
in [21]. Additionally, for the various location condition to-
kens, including masks, bounding boxes, points, and scrib-
bles, each has a 10% dropout rate. We use 64 Nvidia A100
GPUs to train the model.

A4. Applications and Qualitative Results
Iterative Image Generation. InstanceDiffusion’s capabil-
ity for precise instance control allows InstanceDiffusion to

excel in multi-round image generation, leveraging this fea-
ture. InstanceDiffusion enables users to strategically place
objects in specific locations while maintaining the consis-
tency of previously generated objects and the overall scene.
We outline the process of our iterative image generation in
the following three steps:
• 1) Initially, generate images using the global image cap-

tion, all instance captions with their respective location
conditions, and random noise.

• 2) Users have the option to introduce new instances by
supplying additional instance conditions, including text
prompts and locations. They can also modify existing in-
stances by altering their descriptions or locations.

• 3) Employ the revised set of instance conditions, the
global prompt, and the same random noise as in step 1
to create a new image.

Steps 2 and 3 can be repeated for multiple rounds until the
desired outcome is achieved.

In addition to the visuals we have shown in the main pa-
per, we provide more qualitative results on iterative image
generation in Figure A3. With minimal changes to pre-
generated instances and the overall scene, users can selec-
tively introduce new instances (as seen in row two, where “a
bouquet of flowers” and “a donut” are added to the images
from row one), substitute one instance for another (in row
three, “a donut” is replaced with “a lighted candle”), repo-
sition an instance (in row four, “a lighted candle” is moved
to the bottom right corner), or adjust the size of an instance
(in row five, the size of “a bouquet of flowers” is increased).
Hierarchical location conditioning in image composi-
tion. Our findings, illustrated in Figure A4, reveal that
incorporating hierarchical location conditionings - specif-
ically, the locations and sizes of parts and subparts of an
instance - as model inputs subtly alters the overall pose of
an object (right, left, front). This demonstrates the effective
use of spatial hierarchy in visual design. We hope that this
capability could inspire more future research and applica-
tions in fine-grained control in image generation.
More demo results for InstanceDiffusion’s image genera-
tion are shown in Figs. A5 and A6.

Image Caption: A cup of tea with tangerines, bananas, and cookies on the table. high quality. professional photo.
Instance Captions: 1) a cup of tea on a lace doily 2) a close up of three oranges on a black background 3) oranges in a glass bowl on a table 4) a
tray of pastries on a table with oranges 5) a close up of some cookies on a table 6) oranges in a glass bowl 7) oranges in a glass bowl 8) an orange
that has been cut in half on a table 9) an orange is cut in half 10) bananas 11) a bouquet of flowers on a table

Add “a bouquet of flowers” and “A donut”

Replace “A donut” to “A lighted candle”

Move ”A lighted candle” to the right corner

Resize ”a bouquet of flowers”

Figure A3. Iterative Image Generation. With minimal changes to pre-generated instances and the overall scene, users can selectively
introduce new instances (as seen in row two, where “a bouquet of flowers” and “a donut” are added to the images from row one), substitute
one instance for another (in row three, “a donut” is replaced with “a lighted candle”), reposition an instance (in row four, “a lighted candle”
is moved to the bottom right corner), or adjust the size of an instance (in row five, the size of “a bouquet of flowers” is increased).

Image Caption: A cute {animal} standing in a forest at autumn, high quality, professional photo.
Instance Captions: 1) a cute {animal} 2) head 3) Golden Retriever / British Shorthair / Red Panda: nose and mouth; Macaw: beak

Left Front Right Left Front Right

Figure A4. Let’s get everybody turning heads! Hierarchical location conditioning in image composition. These results illustrate how the
orientation of parts and subparts subtly influences the pose of the whole object (right, left, front), demonstrating the application of spatial
hierarchy in visual design. We anticipate that this capability will pave the way for further research and applications in achieving more
precise control in image generation.

Image Caption: stunning beach scene with at sunset. mountains in the distance. a turtle on the beach. Beautiful summer landscape.
Ocean waves on beach at sunset. high quality. professional photo.
Instance Captions: 1) sky at sunset, with blue and purple clouds, beautiful summer landscape 2) mountains at distance 3) ocean
waves 4) beach 5) a turtle on the beach

Image Caption: Black Easter eared rabbit sitting in wicker basket with ripe apples on pink wooden background.Thanksgiving day
concept with funny cute hare and autumn harvest.
Instance Captions: 1) a black rabbit 2) a wicker basket with a rabbit in it. 3) a close up of a ball of hay on the ground

Figure A5. More image generations with point and scribbles as model inputs, which were not supported by previous layout conditioned
text-to-image models.

Image Caption: Cathedral of Palma de Mallorca viewed through lush greenery of the island. Vintage painting, background
illustration, beautiful picture, travel texture
Instance Captions: 1) a large cathedral with spires and trees in the background; 2) a cathedral with a cloudy sky 3) palm trees 4)
palm trees 5) palm trees 6) an ornate building with a spire and a clock tower

InstanceDiffusion Standard T2I

Image Caption: Knitted toy animal in flowers chrysanthemums. Floral background. Minsk Botanical Garden
Instance Captions: 1) sunflower; 2) a small crocheted toy sits on top of yellow flowers 3) sunflower

InstanceDiffusion Standard T2I

Figure A6. More demo images on image generation with point and bounding box as model inputs. The standard Text-to-Image model
refers to the pretrained text-to-image model InstanceDiffusion and GLIGEN used. Standard T2I model uses the image caption as the model
input to generates these images.

