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1. Volume Scattering Derivation
In this section, we derive the volume scattering approximation equation (Eq. (10) in the main paper) from the equation of
transfer [20]. The general equation of transfer accounting for both volume emission and volume scattering is as follows:

Cpbr(r) =

∫ tf

tn

T (tn, t)σt(r(t))L(r(t),−d)dt (1)

s.t r(t) = o+ td

T (tn, t) = exp

(
−
∫ t

tn

σt(r(s))ds

)
σt(r(t)) = σa(r(t)) + σs(r(t))

As defined in the main paper, σs and σa are the scattering coefficient and the absorption coefficient, respectively. They define
the probability of light being scattered/absorbed by the participating media per unit length. σt is the attenuation coefficient,
which is the sum of σs and σa. Physically, it describes the probability of light being either out-scattered or absorbed per
unit length, both of which will reduce the amount of radiance that reaches the camera. We refer readers to [21] for detailed
explaination on physical meanings of these parameters. With some abuse of notation, we define L as the radiance accounting
for both volume emission and volume scattering:

L(r(t),−d) =
σa(r(t))

σt(r(t))
Le(r(t),−d) +

σs(r(t))

σt(r(t))
Ls(r(t),−d) (2)

s.t. Ls(x,−d) =

∫
S2

fp(x,−d, d̄)Li(x,−d̄)dd̄

where Le is the volume emission radiance, Ls is the volume scattering radiance. Since we assume the scene (human body)
does not emit energy itself, Le should always be 0. Li is the incoming radiance via either direct illumination or indirect
illumination, as described in Eq. (9) in the main paper. fp(x,−d, d̄) is the phase function that describes the probability of
light scattering from direction d̄ to −d at point x. Given these facts, Eq. (1) can be re-written as:

Cpbr(r) =

∫ tf

tn

T (tn, t)σs(r(t))Ls(r(t),−d)dt (3)

s.t r(t) = o+ td

T (tn, t) = exp

(
−
∫ t

tn

σt(r(s))ds

)
Ls(x,−d) =

∫
S2

fp(x,−d, d̄)Li(x,−d̄)dd̄

σt(r(t)) = σa(r(t)) + σs(r(t))

which corresponds to Eq. (8) in the main paper. We next describe how to further approximate Eq. (3) with discrete samples.
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The general idea is to sample offsets from the probability density function (PDF) of T (tn, t) and approximate the integral
with Monte-Carlo integration. Define pdf(t) as the PDF of t from which we sample M offsets {t̄(i)}Mi=1, we have:

Cpbr(r) ≈
1

M

M∑
i=1

T (tn, t̄
(i))σs(r(t̄

(i)))

pdf(t̄(i))
Ls(r(t̄

(i)),−d) (4)

in the next two subsections, we describe how to sample from pdf(t).

1.1. Homogeneous Volume

If we assume homogeneous volume, i.e. σt(r(t)) = σt, then we can simplify T (tn, t) according to Beer’s law:

T (tn, t) = exp (−σt|t− tn|) (5)

Sampling from T (tn, t) is equivalent to sampling from an exponential distribution, where the PDF is given by:

pdf(t) = c exp (−σt|t− tn|) (6)

where c is a normalization constant. The cumulative distribution function (CDF) of t should satisfy:∫ ∞

tn

c exp (−σt|t− tn|) dt = − c

σt
exp (−σt|t− tn|)

∣∣∣∞
tn

=
c

σt
= 1 (7)

thus c = σt and we have the following PDF and CDF of t accordingly:

pdf(t) =σt exp (−σt|t− tn|) (8)
P (t) =1− exp (−σt|t− tn|) (9)

1.2. Heterogeneous Volume

If the homogeneous assumption is lifted, we can still approximate the integral by dividing the ray segment (tn, tf ) into
intervals and assuming σt to be constant within each interval.

Formally, let us assume the ray segment is divided into N − 1 intervals, each defined by
[t(1), t(2)), · · · [t(i), t(i+1)), · · · [t(N−1), t(N)) with t(1) = tn, t

(N) = tf . With our assumption on constant σt inside
each interval, i.e. σt(r(t)) = σt(r(t

(i))),∀t ∈ [t(i), t(i+1)), define δ(i) = |t(i+1) − t(i)|, we define the following:

T (t(i), t(i+1)) = exp
(
−σ(r(t(i)))δ(i)

)
,∀i ∈ {1, · · · , N − 1}

T (t(1), t(i)) =
∏
j<i

T (t(j), t(j+1))

T (t(1), t(1)) =1

To obtain the exact PDF from which we sample t, we extend Eq. (5) such that we sample from T (t(1), t) that contains a
homogeneous part and a heterogeneous part:

T (t(1), t) =T (t(i), t)T (t(1), t(i)) (10)

s.t. t(i) ≤ t < t(i+1)

where T (t(1), t(i)) is the accumulated transmittance from the heterogeneous volume before t(i). Similar to Eq. (6) and Eq. (7)
we can derive the normalization constant as σt(r(t)) = σt(r(t

(i))), thus the PDF of t is:

pdf(t) =σt(r(t
(i)))T (t(i), t)T (t(1), t(i))

=σt(r(t))T (t
(1), t) (11)

s.t. t(i) ≤ t < t(i+1)



Plug Eq. (11) into Eq. (4), one will note that the T (tn, t) term is in both the numerator and the denominator. Thus Eq. (4)
simplifies to:

Cpbr(r) ≈
1

M

M∑
i=1

σs(r(t̄
(i)))

σt(r(t̄(i)))
Ls(r(t̄

(i)),−d) (12)

Since we define the combined effect of σs(r(t̄
(i)))

σt(r(t̄(i)))
and the phase function as a BRDF function, which becomes unrelated to

σt, while we also need to be able to differentiate wrt. the geometry represented by σt, we use quadrature weights {w(i)} from
NeRF [15], resulting in Eq. (10) in the main paper:

Cpbr(r) ≈
M∑
i=1

w(i)σs(r(t̄
(i)))

σt(r(t̄(i)))
Ls(r(t̄

(i)),−d) (13)

s.t r(t) = o+ td

w(i) = T (i)
(
1− exp(−σt(r(t̄

(i))δ(i))
)

T (i) = exp

−
∑
j<i

σt(r(t̄
(j)))δ(j)


Ls(r(t̄

(i)),−d) =
fp(r(t̄

(i)),−d, d̄(i))

pdf(d̄(i))
Li(r(t̄

(i),−d̄(i))

σt(r(t)) = σa(r(t)) + σs(r(t))

2. BRDF Definition
As mentioned in the main paper, we use a simplified version of Disney BRDF [2] to model the combined effect of the
volumetric albedo σs(r(t̄

(i)))
σt(r(t̄(i)))

and the phase function fp. It takes predicted albedo α, roughness r and metallic m as inputs:

σs

σt
fp(ωo, ωi) = BRDF(ωo, ωi, α, r,m,n)max (n · ωi, 0) (14)

where ωo and ωi are the outgoing and incoming directions (i.e. surface to camera direction and surface to light direction,
respectively). ωh is the half vector between ωo and ωi, i.e. ωh = ωo+ωi

∥ωo+ωi∥2
. n is the surface normal. The BRDF is defined as

follows:

BRDF(ωo, ωi, α, r,m,n) = (1−m)
α

π
+

F (ωo, α,m)D(ωh,n, r)G(ωo, ωi,n)

4(n · ωo)(n · ωi)
(15)

in which the term (1 −m)απ is the diffuse component while the remaining are specular components. For the specular com-
ponent, F is the Fresnel-Schlick approximation to the exact Fresnel term, D is the isotropic GGX microfacet distribution [5]
and G is Smith’s shadowing term. They are defined as follows:

F (ωo, α,m) = F0(α,m) + (1− F0(α,m))2(−5.55473ωo·ωh−6.98316)ωo·ωh (16)

D(ωh,n, r) =
r2

π((n · ωh)2(r2 − 1) + 1)2
(17)

G(ωo, ωi,n) = G1(ωo,n)G1(ωi,n) (18)
s.t. F0(α,m) = 0.04(1−m) + αm

G1(ω,n) =
(n · ω)

(n · ω)(1− k) + k
and k =

(r + 1)2
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note that for interpolating F , instead of using the typical Schlick approximation, we use the spherical Gaussian approxima-
tion [9, 10] which is slightly more efficient. G1 is the Schlick-GGX approximation to the exact Smith’s shadowing term.

3. Implementation Details
In this section, we provide more details about the implementation of our method.



3.1. Loss Function

In this subsection, we define I(p) ∈ [0, 1]3 as the p-th pixel’s color of the input image, Crf (r
(p)) ∈ [0, 1]3 as the predicted

pixel color of the radiance field, Cpbr(r
(p)) ∈ [0, 1]3 as the predicted pixel color of the physically based rendering, M(p) ∈

{0, 1} as the p-th pixel’s ground truth binary mask value, O(p) ∈ [0, 1] as the predicted ray opacity of the p-th pixel from the
SDF-density field. Further, let P denote the set of all pixels in a training batch. We define the following loss functions:

Radiance Field (RF) Loss: We use L1 loss to measure the difference between the predicted pixel color from the radiance
field and the input image:

LRF =
1

|P |
∑
p∈P

∣∣∣Crf (r
(p))− I(p)

∣∣∣ (19)

Physically Based Rendering (PBR) Loss: We use L1 loss to measure the difference between the predicted pixel color from

the physically based rendering and the input image:

LPBR =
1

|P |
∑
p∈P

∣∣∣Cpbr(r
(p))− I(p)

∣∣∣ (20)

Mask Loss: We use binary cross entropy loss to measure the difference between the predicted ray opacity and the ground

truth binary mask M:

Lmask =
1

|P |
∑
p∈P

[
M(p) logO(p) + (1−M(p)) log(1−O(p))

]
(21)

Eikonal Loss: We also apply Eikonel regularization to analytical gradient of the predicted SDF value at the canonical
locations {x(s)

c = LBS−1(x
(s)
o )}s∈S , where x

(s)
o is a sampled point on a ray in the observation space. S is the set of all

sampled points in a training batch during ray marching of the radiance field, excluding those removed by occupancy grids.

Leikonal =
1

|S|
∑
s∈S

(∥∥∥∇SDF(x(s)
c )

∥∥∥
2
− 1

)2

(22)

Curvature Loss: We apply curvature regularization [22] to the same set of points on which we compute the Eikonal loss.
The curvature loss is defined as follows:

Lcurv =
1

|S|
∑
s∈S

(
n(s) · n(s)

ϵ − 1
)2

(23)

where n(s) is the analytical normal at the canonical location x
(s)
c , i.e. normalized analytical gradient of the SDF n(s) =

∇SDF(x(s)
c )

∥∇SDF(x(s)
c )∥2

. n
(s)
ϵ is the analytical normal of a nearby point x(s)

c + ϵt(s), here ϵ = 0.0001 and t(s) is a random direction

that is tangential to normal direction n(s).

Local Smoothness Loss: We apply local smoothness regularization on predicted albedo α, roughness r and metallic m
values, in a similar way to [8, 24]:

Lsmoothness =
1

|P|
∑
p∈P

N(p)∑
i=1

w(p,i)∆α(p,i) +

N(p)∑
i=1

w(p,i)∆r(p,i) +

N(p)∑
i=1

w(p,i)∆m(p,i)

 (24)

s.t. ∆α(p,i) =
α(p,i) − α

(p,i)
ϵ

max(max(α(p,i), α
(p,i)
ϵ ), 1e− 6)

∆r(p,i) =
r(p,i) − r

(p,i)
ϵ

max(max(r(p,i), r
(p,i)
ϵ ), 1e− 6)

∆m(p,i) =
m(p,i) −m

(p,i)
ϵ

max(max(m(p,i),m
(p,i)
ϵ ), 1e− 6)



where N (p) is the number of samples on ray p. w(p,i) is the quadrature weight of the i-th sample on ray p. α
(p,i)
ϵ , r(p,i)ϵ ,

m
(p,i)
ϵ are albedo, roughness and metallic queried at a perturbated location near the i-th sample of ray p.

Lipschitz Bound Loss: Lastly, we apply the Lipschitz bound loss [13] to enforce Lipschitz smoothness of the material
MLP. [22] uses the same technique to regularize the radiance MLP. Formally, given an MLP’s i-th layer y = actv(Wix+ bi)
along with a trainable Lipschitz bound ki, the layer is reparameterized as

y = actv
(
Ŵix+ bi

)
, Ŵi = norm(Wi, softplus(ki)) (25)

where norm(·, ·) normalizes the weight matrix Wi by rescaling each row such that the row sum’s absolute value is less than
or equal to the softplus(ki). The Lipschitz bound loss is defined as follows:

LLip =

L∏
i=1

softplus(ki) (26)

where L is the number of layers in the MLP.

Combined Loss: The final loss function is defined as follows:

L = LRF + λPBRLPBR + λmaskLmask + λeikonalLeikonal + λcurvLcurv + λsmoothnessLsmoothness + λLipLLip (27)

where we set λPBR = 0.2, λmask = 0.1, λeikonal = 0.1, λsmoothness = 0.01. We set λcurv = 1.5 for the first 12.5k iterations and
0 after that. We set λLip = 1e− 5 after 12.5k iterations and 0 before that.

3.2. Albedo Evaluation

For evaluating the predicted albedo image, we first align the predicted albedo with the ground truth albedo. Given N samples
on a ray, the predicted albedo of a ray r is defined as follows:

Â(r) =

N∑
i=1

w(i)α(i) (28)

we compute per-channel scaling factors s = (sr, sg, sb) to align the predicted albedo with the ground truth albedo. Given
A

(p)
r as the ground truth red albedo of the p-th pixel, the following equation is computed for sr:

sr =

∑
p∈P Âr(r

(p)) ·A(p)
r∑

p∈P Âr(r(p)) · Âr(r(p))
(29)

while sg and sb are computed similarly. We evaluate image quality metrics (i.e. PSNR, SSIM, LPIPS) on the aligned predicted
albedo. We visualize the aligned predicted albedo on synthetic data and the non-aligned predicted albedo on real data.

3.3. Additional Implementation Details

We use a mixture of 64 spherical Gaussians to represent environment lighting during training. During relighting, we do not
use indirect illumination as the learned radiance field on training data is not applicable to the new lighting condition. We
clip the pixel prediction from both the radiance field and the PBR to [0, 1] and apply standard gamma correction to obtain
the final image in sRGB space. For a fair comparison, we also integrate light importance sampling into R4D for relighting,
which directly samples 1024 directions on the high-resolution environment map.

We also implement the pose optimization module following [23]. This module is enabled for the SyntheticHuman-
Relit dataset as the motion is more complex compared to other datasets, while the original ground-truth SMPL estimations
from [19] are also slightly misaligned with the image.

To stay consistent with R4D and [11, 24], we also calibrate our albedo prediction to the range [0.03, 0.8]. We note this
technique is especially useful when the subject wears near-black clothes (i.e. albedo < 0.1 for all channels).

Temporal Occupancy Grids: A common technique to reduce computation is to maintain an occupancy grid to mark
occupied voxels during training and skip unoccupied voxels during ray marching/tracing [1, 3, 12, 16] . This also applies
to temporal reconstruction as one can define the occupancy grid as the union of all shapes from different time steps [7]. To
further reduce the computational cost, we employ a 4D occupancy grid structure [18] in which we maintain a 643 occupancy
grid for each training frame. At the beginning of training, we first use a single occupancy grid for all frames. After we have
attained a reasonable SDF we re-initialize the occupancy grid for each frame using the learned canonical SDF.



4. SyntheticHuman-Relit Dataset

To properly compare with R4D on relighting of training poses, we created a new dataset, SyntheticHuman-Relit, which is a
subset of the SyntheticHuman dataset [19] relit using new material and lighting conditions. The dataset consists of 2 synthetic
humans (Jody and Leonard), each rotating in front of a fixed camera.

We note that the original SyntheticHuman dataset was rendered under studio lighting and the materials were overly spec-
ular compared to real humans. We thus adjusted the materials and re-rendered the dataset under more natural lighting
conditions. See a comparison of the original SyntheticHuman dataset and the new SyntheticHuman-Relit dataset in Fig. 1.

To test relighting on training poses, we further re-rendered each training pose of the SyntheticHuman-Relit dataset under
a random environment map that was not used in the training set.

SyntheticHuman - Jody SyntheticHuman - Leonard SyntheticHuman-Relit - Jody SyntheticHuman-Relit - Leonard

Figure 1. Comparison between the SyntheticHuman dataset and the SyntheticHuman-Relit dataset. Note that the SyntheticHuman
dataset is overly specular compared to real humans, while the light sources are also studio-like. In contrast, SyntheticHuman-relit adopts a
more diffuse appearance which is closer to real humans, while the subjects are lit under natural, outdoor illumination.

5. Additional Quantitative Results

The per-subject and average metrics of R4D, R4D*, and Ours are reported in Tab. 1. We also tested a variant of our approach
that does not calibrate the albedo into the range [0.03, 0.8], denoted as Ours†. Since R4D* and Ours achieve overall better per-
formance than their variants (R4D and Ours†) on the RANA dataset, we only report R4D* and Ours on the SyntheticHuman-
Relit dataset in Tab. 2. We also additionally report ARAH [23]’s results on geometry reconstruction, evaluated by the normal
error metric. Albedo estimation and relighting are not evaluated as ARAH does not predict the intrinsic properties of avatars.

6. Additional Qualitative Results

We present additional qualitative results on the RANA dataset in Fig. 2 and Fig. 3, while Fig. 4 shows additional qualitative
results on the SyntheticHuman-Relit dataset. We also present more qualitative results on the PeopleSnapshot dataset in Fig. 5
and Fig. 6. We additionally show qualitative results on the ZJU-MoCap [17] dataset in Fig. 7.

7. Limitations and Future Work

Since we focus on video sequences for people holding still and rotating in front of the camera, we did not consider pose-
dependent non-rigid motion, similar to the assumption of [6, 7]. Our approach can also fail if estimated poses or segmentation
masks are too noisy. Furthermore, our canonical pose representation is not suitable for the animation of very loose clothes
such as skirts or capes.

Our approach is also relatively slow at inference time, requiring about 20 seconds to render a single 540x540 image on
a single RTX 3090 GPU. Regardless, our model’s outputs are fully compatible with existing physically based rendering
pipelines, further acceleration can be achieved by using more optimized implementation of volumetric scattering at inference
time.

In the future, we plan to extend our approach to more challenging scenarios, such as modeling large pose-dependent non-
rigid deformations. Applying physically based inverse rendering for relightable scenes and avatar reconstruction is also a
promising direction [4, 14].



Ours

Input RGB Albedo Geometry Repose and Relit Input RGB Albedo Geometry Repose and Relit

R4D*

Input RGB Albedo Geometry Repose and Relit Input RGB Albedo Geometry Repose and Relit

Ground Truth

Input RGB Albedo Geometry Repose and Relit Input RGB Albedo Geometry Repose and Relit

Figure 2. Additional qualitative results on the RANA dataset. We note that our method removes the shadow from the estimated albedo,
whereas R4D* bakes shadow into albedo (column 2). On another subject, we produce albedo close to ground truth while R4D* produces
overly dark albedo (column 6).
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Subject Method Albedo Normal Relighting (Novel Pose)

PSNR ↑ SSIM ↑ LPIPS ↓ Error ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Subject 01

ARAH - - - 12.89 ◦ - - -
R4D 20.64 0.7673 0.2199 64.07 ◦ 11.73 0.7865 0.2028

R4D* 20.04 0.8525 0.2079 33.61 ◦ 18.22 0.8425 0.1612
Ours† 23.69 0.7998 0.1916 11.35 ◦ 18.35 0.8727 0.1200
Ours 24.11 0.8679 0.1827 12.05 ◦ 18.48 0.8859 0.1219

Subject 02

ARAH - - - 11.92 ◦ - - -
R4D 15.14 0.8089 0.2926 30.20 ◦ 15.08 0.8361 0.1954

R4D* 12.13 0.7690 0.2599 28.34 ◦ 14.38 0.8128 0.1787
Ours† 20.25 0.8733 0.1898 9.27 ◦ 18.86 0.8781 0.1336
Ours 20.94 0.8892 0.1854 9.29 ◦ 19.08 0.8812 0.1323

Subject 05

ARAH - - - 9.78 ◦ - - -
R4D 19.66 0.8223 0.2484 31.18 ◦ 16.59 0.8354 0.1916

R4D* 19.74 0.8151 0.2488 26.14 ◦ 17.72 0.8469 0.1780
Ours† 21.06 0.8159 0.2262 9.51 ◦ 17.40 0.8750 0.1466
Ours 22.24 0.8591 0.2071 9.52 ◦ 17.47 0.8769 0.1453

Subject 06

ARAH - - - 12.06 ◦ - - -
R4D 17.26 0.5954 0.3466 81.79 ◦ 7.31 0.7567 0.2821

R4D* 21.57 0.7992 0.2177 25.83 ◦ 17.54 0.8866 0.1636
Ours† 21.07 0.7093 0.2241 8.91 ◦ 17.89 0.8647 0.1294
Ours 22.94 0.8233 0.1928 8.89 ◦ 18.14 0.8932 0.1271

Subject 33

ARAH - - - 10.28 ◦ - - -
R4D 17.95 0.8335 0.1900 27.53 ◦ 16.08 0.8202 0.1960

R4D* 18.35 0.8426 0.1887 25.24 ◦ 16.78 0.8173 0.1859
Ours† 21.78 0.8395 0.1259 9.07 ◦ 17.62 0.8352 0.1332
Ours 21.67 0.8703 0.1351 9.52 ◦ 18.03 0.8426 0.1366

Subject 36

ARAH - - - 11.62 ◦ - - -
R4D 20.38 0.9091 0.1844 43.44 ◦ 15.99 0.8200 0.1899

R4D* 23.80 0.9100 0.1611 24.76 ◦ 17.05 0.8574 0.1707
Ours† 24.30 0.7946 0.1739 9.09 ◦ 17.25 0.8520 0.1308
Ours 24.88 0.8900 0.1324 9.22 ◦ 17.46 0.8726 0.1284

Subject 46

ARAH - - - 10.38 ◦ - - -
R4D 16.40 0.8381 0.1455 32.64 ◦ 16.05 0.8289 0.1720

R4D* 18.13 0.8777 0.1238 33.27 ◦ 16.30 0.8338 0.1649
Ours† 22.17 0.9314 0.0744 10.41 ◦ 16.89 0.8377 0.0965
Ours 22.47 0.9391 0.0725 10.69 ◦ 17.08 0.8406 0.1000

Subject 48

ARAH - - - 10.13 ◦ - - -
R4D 18.50 0.8502 0.3037 30.67 ◦ 16.10 0.8224 0.1840

R4D* 12.10 0.7370 0.2264 21.84 ◦ 14.98 0.7985 0.1776
Ours† 23.28 0.9075 0.1838 10.32 ◦ 19.50 0.8823 0.1307
Ours 23.36 0.9137 0.1857 10.49 ◦ 19.70 0.8849 0.1313

Average

ARAH - - - 11.13 ◦ - - -
R4D 18.24 0.7780 0.2414 42.69 ◦ 14.37 0.8133 0.2017

R4D* 18.23 0.8254 0.2043 27.38 ◦ 16.62 0.8370 0.1726
Ours† 22.20 0.8339 0.1737 9.74 ◦ 17.97 0.8622 0.1276
Ours 22.83 0.8816 0.1617 9.96 ◦ 18.18 0.8722 0.1279

Table 1. Metrics on the RANA dataset.



Subject Method Albedo Normal Relighting (Training Pose)

PSNR ↑ SSIM ↑ LPIPS ↓ Error ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Jody
ARAH - - - 15.79 ◦ - - -
R4D* 17.95 0.7275 0.2319 33.51 ◦ 21.85 0.9012 0.1277
Ours 23.10 0.8353 0.1584 13.90 ◦ 22.24 0.9336 0.1055

Leonard
ARAH - - - 15.96 ◦ - - -
R4D* 25.67 0.8838 0.1841 25.93 ◦ 23.23 0.9216 0.1296
Ours 26.98 0.7872 0.1568 14.45 ◦ 24.23 0.9490 0.0954

Average
ARAH - - - 15.88 ◦ - - -
R4D* 21.81 0.8057 0.2080 29.72 ◦ 22.57 0.9123 0.1283
Ours 25.04 0.8113 0.1567 14.18 ◦ 23.24 0.9413 0.1005

Table 2. Metrics on the SyntheticHuman-Relit dataset.
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Figure 5. Additional qualitative results on the PeopleSnapshot dataset. We show 6 subjects from the dataset under novel pose and
novel illuminations.
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Figure 6. Additional results on learned intrinsic properties from the PeopleSnapshot dataset.
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Figure 7. Results on the ZJU-MoCap dataset. We show results on monocular input (top row) and 4-view input (bottom row). Note that
the environment lighting in the ZJU-MoCap dataset is relatively dark, resulting in darker albedo in the monocular setup.
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