
Inverse Rendering of Glossy Objects via
the Neural Plenoptic Function and Radiance Fields:

Supplementary Materials

This supplementary material provides additional infor-
mation and experiment results pertaining to the main pa-
per, ”Inverse Rendering of Glossy Objects via the Neu-
ral Plenoptic Function and Radiance Fields”, including de-
tailed descriptions of the training process, a mathematical
derivation of a θc, and more visual results to complement
the experiments reported in the main manuscript.

1. Implementation Details
In this section, we elaborate on the training methodology
and loss functions utilized across the two stages of our
method, and outline the specific strategies to stabilize and
optimize the learning process for both geometry and mate-
rial properties.

1.1. Fields Learning Stage

In the fields learning stage, our loss function comprises four
components:

L1 = λ1Lc + λ2Leik + λ3Lstable + λ4Lcurv, (1)

where λ1, λ2, λ3, λ4 are loss weights. The color loss Lc

aligns the rendered images with the input data, as elaborated
in the main paper. Accompanying it is the eikonal loss, Leik,
which regulates the SDF value to keep its gradient norm
equal 1. This loss is critical for enforcing the SDF constraint
and is mathematically represented as:

Leik =
∑
x

(∥∇SDFx∥ − 1)
2
. (2)

To improve the stability of the training, especially in the
initial phase, we incorporate Lstable, which pushes the SDF
values of sampled points near the unit sphere bounds toward
zero following NeRO [4].

Surface smoothness [6] is accounted for by Lcurv, which
constrains the curvature of the normals. By evaluating
points slightly perturbed along the tangent plane, this loss
ensures that the reconstructed geometry does not exhibit un-
warranted roughness, thereby promoting a smoother surface
representation:

normal

incident ray

Figure 1. The geometry relationship of angles, where the angles
notated in the same color equal.

Lcurv =
∑
x

(n · nϵ − 1)2, (3)

where nϵ is the sampled point on the tangent plane and n is
the normal vector at position x.

1.2. Material Learning Stage

In the subsequent material learning stage, we adopt a
straightforward plain L1 loss as RGB loss Lrgb, which is
supervised by the GT pixel colors of the target object. As
a complement, we use a regularization loss Lreg, which
ensures the uniformity of the predicted material attributes
across nearby points for position x, preserving the smooth-
ness items for roughness, metallic, albedo, and diffuse light
properties. For example, the roughness smoothness item is:

Lreg-roughness =
∑
x

||r − rϵ||, (4)

where r and rϵ are the predicted roughness at position x and
slightly shifted position x+ ϵ.
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Figure 2. Additional geometry reconstruction cases compared with NeRO. This comparison further validates the robustness and fidelity of
the generated object geometries.

1.3. Implementation and Training Time

Our implementation is based on the Nerfstudio frame-
work [7] and PyTorch. We utilize the PyTorch adaptation
of NeRF for the environmental field and object field. De-
spite the faster training potential of Instant-NGP [5] ver-
sion, our practice shows instability when modifications are
introduced to the default instant-NGP model. The train-
ing time for our fields learning stage is approximately 4–5
hours, and the material learning stage takes about 1 hour,
both using a single NVIDIA RTX 4090 GPU. For reference,
training NeRO with identical hyperparameters and training
steps also requires 4-5 hours for stage 1 and about 1 hour
for stage 2.

2. Derivation of θc
The variable θc plays a pivotal role in our material-aware
cone sampling strategy. Here we present a step-by-step
mathematical derivation of θc, elucidating its theoretical
underpinnings and practical applications within our frame-
work.

2.1. Mathematical Formulation

Given the probability density function (PDF) for the az-
imuth and elevation angles of GGX distribution:

pm(θ, ϕ) =
r4 cos θ sin θ

π((r4 − 1) cos2 θ + 1)2
, (5)

we integrate it over the azimuth angle to yield a func-
tion of the elevation angle only, as the GGX distribution

is isotropic:

pm(θ) =

∫ 2π

0

pm(θ, ϕ)dϕ =
2r4 cos θ sin θ

((r4 − 1) cos2 θ + 1)2
. (6)

The cumulative distribution function (CDF), which rep-
resents the probability of the microfacet normal being
within a cone defined by angle θ, is then:

Pm(θ) =

∫ θm

0

pm(θ)dθ

=
r4

(r4 − 1) ((r4 − 1) cos2 (θ) + 1)

∣∣∣∣θm
0

=
sin2 (θm)

(r4 − 1) cos2 (θm) + 1
.

(7)

To find the value of θ that captures a predefined portion
β of the light energy, we solve the equation Pm(θ) = β:

β =
sin2 (θm)

(r4 − 1) cos2 (θm) + 1

⇒ β =
tan2(θm)

(r4 − 1) + (1 + tan2(θm))

⇒ θm =arctan

(
r2

√
β

1− β

) (8)

This θm defines the range for sampling the orientation of
microfacet normals and correlates with the spatial extent of
the BRDF lobe. Based on θm, it is simple to get the repre-
sentation of the cone vertex angle θc = 4θm via geometry
relationship illustrated in Fig. 1



Input image

A
lb

ed
o

M
et

al
lic

 &
R

ou
gh

ne
ss

Li
gh

tin
g

0

1.0

Figure 3. Comparative material reconstruction results with the additional method NvdiffrecMC, which highlights the capability of high-
quality material recovery of our approach

2.2. Practical Implications

In mathematical, we have θc = 4θm, with θm being ex-
pressible in terms of the roughness parameter r. However,
obtaining the actual value of θm necessitates computing the
arctangent function, which incurs additional computational
overhead.

In practice, to avoid this inefficiency, we do not employ
θc directly. Instead, we utilize its half angle θh = 2θm.
Given that Integral Positional Encoding (IPE) is defined in
terms of the radius a of the circle at position x, we can
calculate a directly using the formula a = tan(θh)t, where t
is the distance from the ray origin to x. This computation is
further simplified by leveraging the trigonometric identity:

tan(θh) =
2 tan(θm)

1− tan2(θm)
, (9)

thereby streamlining the calculation and reducing the time
complexity.

3. More Visual Results

To further illustrate the effectiveness of our proposed
method, we include more visual results that showcase the
model’s performance across various scenes of the proposed
dataset.

3.1. Extended Geometry Experiments

We show additional cases in our geometry reconstruction
experiments to further validate the robustness and accuracy
of our approach. These extended cases provide more sce-
narios, ensuring a comprehensive evaluation. The results of
these additional experiments are illustrated in Fig. 2.

3.2. Material Comparison Experiments

Notwithstanding the space constraints of the main paper,
we compare NeRO only in our main paper. Thus, here we
include an additional method NvdiffrecMC [1], in our mate-
rial comparison experiments within this supplementary doc-
ument. The results are depicted in Fig. 3. Although sev-
eral noteworthy methods have been proposed recently, such
as NeILF++ [9], ENVIDR [3], and TensoIR [2], we found
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Figure 4. Evaluation results on the Shiny Blender and NeRO datasets.

ENVIDR and TensoIR have different decomposition formu-
lations as ours. e.g., they did not explicitly model certain
properties such as metallic. Additionally, the implementa-
tion of NeILF++ supports the DTU dataset only, limiting its
comparability with our approach. Therefore, these methods
were not included in our comparative analysis.

3.3. Extended Evaluation on Additional Datasets

In this section, we extend the evaluation of our proposed
method to include its performance on the Shiny Blender
dataset [8] (Fig. 4.a) and the NeRO dataset [4] (Fig. 4b).
Specifically, for the Shiny Blender dataset, we present only
the geometric outputs, as our method is unable to opti-
mize the environmental field and materials in the absence
of background information.

3.4. Supplementary Video Results

For a more comprehensive view of our method’s perfor-
mance, we refer the reader to the supplementary videos
attached. These videos provide dynamic visualizations of
the reconstructed geometry and materials comparison in the
main paper, offering a vivid demonstration of our method’s
capabilities.
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