
CVPR
#8303

CVPR
#8303

CVPR 2024 Submission #8303. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LightOctree: Lightweight 3D Spatially-Coherent Indoor Lighting Estimation

Supplementary Material

1. Details in Rendering Layer001

In this section, we delve into the rendering layer employed002
within our framework. Leveraging a multi-level octree for003
sparse illumination representation, we have devised a fast004
differentiable cone tracing method to render 2D panoramic005
environment maps from lighting octree.006

In classical volume rendering, we calculate the light ra-007
diation L(s) from a viewpoint x in direction ω using the008
rendering equation (Equation 1). The radiance function is009
defined as the integral L(s) of transmittance T (t), density010
σ(t), and radiance intensity Le(t) over the path length s.011

L(s) =

∫ s

t=0

T (t)σ(t)Le(t)dt (1)012

To solve this equation, we discretize it with a sampling dis-013
tance δk between consecutive sampling points:014

L(s) =

N∑
n=1

CnTn

(
1− e−σnδn

)
, Tn = e−

∑n−1
k=1 σkδk

(2)015
We optimize the rendering process with cone tracing to016

reduce samples and enhance sampling efficiency, inspired by017
prior works [1, 3]. This approach also effectively integrates018
multi-scale outputs from the lighting estimation network,019
adapting to the characteristics of octree-based networks.020

Given the angle θ of the cone, the sampling position sn021
and sampling step distance δn of each sampling point are022
computed based on the distance traveled and the angle of023
the previous point (Equation 3). This approach allows for024
more frequent sampling of nearby light sources, enhancing025
sensitivity to critical lighting information.026

sn =

n∑
k=0

δk, δn =

{
c0, n = 0

c · sn−1 tan θ, n ≥ 1
(3)027

Then, by calculating the cone radius at the sampling point028
location, we sample octree nodes at depth dn:029

dn = ⌈log2
δn
l0
⌉ (4)030

where l0 illustrate the minimum side length of leaf node031
in the octree. Based on these processes, the new rendering032
equation can be formulated as equation 5.033

L(s) =

N∑
n=1

wnC
dn
n Tn

(
1− e−σdn

n δn
)

(5)034

where Cdn
n and σdn

n represents the radiance and density of 035
sampling point n at a depth of dn. And wn = δn/sn is the 036
weight for each sampling point. 037

To ensure the differentiability of the above process, we 038
derive the derivatives of the color and opacity with respect 039
to the forward rendering process, as shown in equation 6, 040

where En = 1− e−σdn
n δn to simplify the formula. 041

∂L(x, ω)

∂σdt
t

= wtC
dt
t Tt+1δt−

[
L(x, ω)−

t∑
n=1

wnC
dn
n TnEn

]
δt

(6) 042043

∂L(x, ω)

∂Cdt
t

=
∂
(∑N

n=1 C
dn
n Tn

(
1− e−σdn

n δn
))

∂Cdt
t

= TtEt

(7) 044
The above equations describe how to calculate derivatives 045
during rendering. The derivatives of color can be computed 046
during the sampling process, while the derivatives of density 047
require the use of the final rendering results. Building upon 048
the derived formulas, we have implemented a differentiable 049
renderer using Taichi[2], enabling rapid forward rendering 050
and gradient calculations. 051

2. Details in Object Insertion 052

Given that common object representations are typically 053
meshes, while point clouds are prevalent in AR applica- 054
tions, and our lighting representation employs a voxel oc- 055
tree structure, we’ve devised a fusion rendering method that 056
seamlessly combines point clouds, meshes, and octrees. 057

2.1. Scene Representation 058

Background Representation Differential rendering en- 059
compasses the rendering of virtual objects and the shading 060
computation, which requires multiple environment lighting 061
queries. Each query involves casting a cone from the surface 062
position x into the environment to find radiance incident 063
from the ray direction (solid angle direction wi). We employ 064
a point cloud to represent the original scene, including depth 065
and color information from the viewpoint to the surfaces. 066
This point cloud is per-pixel, allowing us to skip ray colli- 067
sions from the viewpoint to the scene surfaces and directly 068
use the projected depth from the point cloud as the position. 069
We utilize this information to determine the spatial relation- 070
ship between the scene and virtual objects. We perform cone 071
tracing to illuminate the rendered virtual objects. 072

Virtual Object Representation To efficiently perform ray 073
intersections and integrate it into the Taichi framework, we 074

1



CVPR
#8303

CVPR
#8303

CVPR 2024 Submission #8303. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

normalizes the bounding boxes of virtual objects to the range075
of 0 to 1. For each triangular face, a multi-level regular grid076
space division is performed in this three-dimensional space,077
which is managed using the SNode structure.078

2.2. Differential Rendering079

Due to the fact that virtual objects in the scene typically oc-080
cupy only a small portion, yet they may consist of thousands081
or even tens of thousands of triangles, achieving real-time082
rendering with three different data structures in AR applica-083
tions requires a new approach to index lookup. During the084
ray traversal through the bounding box, we can calculate the085
index of the first intersected object grid based on the ray’s086
origin Ro and direction Rd, as shown below:087

Hmin = max

(
min

(
Boxmin −Ro

Rd
,
Boxmax −Ro

Rd

))
I0 = floor

(
Ro +RdHmin −Boxmin

Boxsize

)
(8)088

where Boxmin and Boxmax represent the coordinates of089
the bounding box’s vertices, and Boxsize represents the size090
of the bounding box.091

In subsequent tracing steps, the index of the next grid092
can be obtained based on the ray’s current position Rt and093
normalized forward direction R′

d as follows:094

R′
t = (1−Rt) ∗ (R′

d ≥ 0) +Rt ∗ (R′
d < 0)

It+1 = It +G

(
R′

t

R′
d

)
∗ sign (R′

d)
(9)095

where G(·) calculates the axis with the smallest advancement096
in the axis directions. For example, if G((0.5, 0.2, 0.7)) =097
(0, 1, 0). During rendering, we emit a ray from the camera098
viewpoint for each pixel on the screen and employ ray tracing099
to trace it until it intersects with an object. Upon detecting an100
intersection, we emit a cone of rays from the object’s surface101
in various directions based on the surface normal. This cone102
of rays is then traced and rendered using ray marching, with103
the results obtained from volume rendering serving as the104
illumination for surface shading. Same to the rendering layer,105
we begin with a minimum step size δmin and later perform106
long-distance mip-map sampling based on the cone’s radius.107

As the scene is managed using an octree, obtaining the108
voxel index directly from the sampling point’s position is109
not feasible. Therefore, we trace the voxel recursively based110
on the current sampling point’s location within the volume.111
To improve performance, we utilize a shared recursive stack112
for all cone rays, modifying the sampling order based on113
the ray’s direction. Instead of clearing the stack after each114
sampling, we continue the recursion in the next sampling, en-115
hancing efficiency. Once we determine the sampling point’s116
position and its associated node, we perform trilinear inter-117

polation using the values within the node block, accumulate 118
the results along the ray and apply for shading. 119

3. Details in Dataset Construction 120

We train our model using photorealistic renderings of in- 121
door scenes from the FutureHouse synthetic dataset[4]. This 122
dataset consists of artist-designed indoor panoramas with 123
high-quality geometry and HDR environment maps. We can 124
extract photographs from this dataset to obtain input/output 125
pairs for training. It is worth mentioning that we chose to 126
use panorama datasets instead of InteriorNet dataset used 127
by [5] and [12], or the OpenRoom dataset used by [9] and 128
[10]. This is because the images in InteriorNet have low 129
dynamic range, and the resolution of the panoramic data in 130
OpenRoom is too low. These shortcomings make these two 131
datasets less ideal for lighting estimation tasks. Although 132
InteriorVerse proposed by [11] is a better choice, at the time 133
of writing this paper, the lighting data of this dataset are 134
still unavailable. Fortunately, with the HDR panoramas and 135
related geometry information provided by FutureHouse, we 136
can construct the training data that meets our needs. 137

Figure 1. Schematic visualization of the constructed dataset.

Each training sample {I,D,Os, {Inv, Pnv}N} contains 138
one LDR perspective image I as inputs and paired data as 139
ground truth to supervise depth and lighting voxel octree. 140
The construction process of a single sample is as follows: 141
For a perfect 360-degree camera, we can treat its imaging 142
plane as a sphere, and any point in world coordinates can be 143
projected onto this sphere as a spherical projection. There- 144
fore, for each RGB panoramic image and its corresponding 145
depth panoramic image in the dataset, we can reproject all 146
points onto the world coordinate system using the inverse 147
transformation of spherical projection, thus obtaining the 3D 148
point cloud of the scene P . Based on the 3D point cloud 149
P , we can construct all the required ground truth. For the 150
input image I and its corresponding depth map D, we use 151
a perspective camera model with a field of view (FOV) of 152
90 degrees and an aspect ratio of 1 (similar to what [6] did) 153
to reproject points on the sphere onto a cube face, obtaining 154
four perspective images that cover a 360-degree horizontal 155
view. For the ground truth of the scene’s voxel octree, we 156
can directly construct it from the point cloud P using the 157
method introduced by [7, 8]. For the new viewpoint images 158

2



CVPR
#8303

CVPR
#8303

CVPR 2024 Submission #8303. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

{Inv, Pnv}N , we construct a uniform voxel grid with a res-159
olution of 2563 from the point cloud P , and then render N160
HDR panoramic images at locations that are visible in the161
perspective input image I using a rendering method similar162
to NeRFs. The corresponding camera positions Pnv are also163
recorded during rendering. Based on the 28,579 panoramic164
views from 1,752 house-scale scenes provided by Future-165
House, we construct and select 113,232 pairs of data for166
model training. We use 90% (1,570) of the scenes to train167
our model and reserve 10% (180) for evaluation.168

4. Additional Details169

Bad cases. Depth estimation inaccuracies may lead to un-170
foreseen outcomes in environments with complex lighting or171
geometry, as depicted in Figure 2. Artifacts observed in both172
Wang et al. and ours are presumably due to erroneous initial173
depth compromising alpha prediction accuracy. However,174
the distant environmental illumination assumption may also175
fail in these scenarios with intense spatially-varying lighting.176

(a) Gardner et al. [21] (b) Li et al. [37] (c) Wang et al. [42] (d) Ours (e) Reference Image

Figure 2. Cases of failure in certain special circumstances.

Data used in user study. Images are showcased in Figure177
3, where video frames in virtual object insertion results were178
extracted and amalgamated into a single composite image.179

(a) Gardner et al. [21] (b) Li et al. [37] (c) Lighthouse [24] (d) Ours (e) Input Image

Figure 3. Virtual object insertion examples used in user study.

References180

[1] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green,181
Elmar Eisemann, and MLeal Llaguno. Interactive indirect182
illumination using voxel cone tracing. Computer Graphics183
Forum, page 1921–1930, 2011. 1184

[2] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-185
Kelley, and Frédo Durand. Taichi: a language for high-186
performance computation on spatially sparse data structures.187
ACM Transactions on Graphics (TOG), 38(6):201, 2019. 1188

[3] Samuli Laine and Tero Karras. Efficient sparse voxel octrees.189
In Proceedings of the 2010 ACM SIGGRAPH symposium on190
Interactive 3D Graphics and Games, pages 55–63, 2010. 1191

[4] Zhen Li, Lingli Wang, Xiang Huang, Cihui Pan, and Jiaqi192
Yang. Phyir: Physics-based inverse rendering for panoramic193
indoor images. In IEEE/CVF Conference on Computer Vision194
and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,195
June 18-24, 2022, pages 12703–12713. IEEE, 2022. 2196

[5] Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, 197
Jonathan T. Barron, Richard Tucker, and Noah Snavely. Light- 198
house: Predicting lighting volumes for spatially-coherent illu- 199
mination. In 2020 IEEE/CVF Conference on Computer Vision 200
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 201
13-19, 2020, pages 8077–8086. Computer Vision Foundation 202
/ IEEE, 2020. 2 203

[6] Fu-En Wang, Hou-Ning Hu, Hsien-Tzu Cheng, Juan-Ting 204
Lin, Shang-Ta Yang, Meng-Li Shih, Hung-Kuo Chu, and Min 205
Sun. Self-supervised learning of depth and camera motion 206
from 360 videos. In Asian Conference on Computer Vision, 207
pages 53–68. Springer, 2018. 2 208

[7] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 209
Adaptive o-cnn: A patch-based deep representation of 3d 210
shapes. ACM Transactions on Graphics, page 1–11, 2018. 2 211

[8] Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual octree 212
graph networks for learning adaptive volumetric shape repre- 213
sentations. ACM Transactions on Graphics, page 1–15, 2022. 214
2 215

[9] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan 216
Sunkavalli, and Manmohan Chandraker. Inverse rendering 217
for complex indoor scenes: Shape, spatially-varying lighting 218
and svbrdf from a single image. In 2020 IEEE/CVF Con- 219
ference on Computer Vision and Pattern Recognition, CVPR 220
2020, Seattle, WA, USA, June 13-19, 2020, pages 2472–2481. 221
Computer Vision Foundation / IEEE, 2020. 2 222

[10] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng 223
Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh B. Gun- 224
davarapu, Jia Shi, Sai Bi, Hong-Xing Yu, Zexiang Xu, Kalyan 225
Sunkavalli, Milos Hasan, Ravi Ramamoorthi, and Manmohan 226
Chandraker. Openrooms: An open framework for photoreal- 227
istic indoor scene datasets. In IEEE Conference on Computer 228
Vision and Pattern Recognition, CVPR 2021, virtual, June 229
19-25, 2021, pages 7190–7199. Computer Vision Foundation 230
/ IEEE, 2021. 2 231

[11] Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua 232
Zhong, Dianbing Xi, Jiaxiang Zheng, Rui Tang, Hujun Bao, 233
and Rui Wang. Learning-based inverse rendering of complex 234
indoor scenes with differentiable monte carlo raytracing. In 235
SIGGRAPH Asia, 2022. 2 236

[12] Zian Wang, Jonah Philion, Sanja Fidler, and Jan Kautz. Learn- 237
ing indoor inverse rendering with 3d spatially-varying light- 238
ing. In 2021 IEEE/CVF International Conference on Com- 239
puter Vision, ICCV 2021, Montreal, QC, Canada, October 240
10-17, 2021, pages 12518–12527. IEEE, 2021. 2 241

3


	. Details in Rendering Layer
	. Details in Object Insertion
	. Scene Representation
	. Differential Rendering

	. Details in Dataset Construction
	. Additional Details

