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6. Layer selections

Layer | ResNet50 | Inception v3 | ConvNeXt tiny
1 layerl Conv2d_4a_3x3 stages[0]
2 layer2 Mixed_6a stages[1]
3 layer3 Mixed-7a stages[2]
4 layer4 Mixed_7¢c stages[3]

Table 6. Selected layers for the three backbone models used in this
paper.

In Table 6, we present the selected layers for ResNet50,
InceptionV3, and ConvNeXt-tiny, with the layer names fol-
lowing the PyTorch code. In the case of ResNet50 and Con-
vNeXt, the selected layers are based on the original archi-
tecture design, where each layer corresponds to one convo-
lutional block. For InceptionV3, we partition the model into
four parts, treating each as a distinct layer.

7. Training process

Our complete training workflow is depicted in Algo-
rithm 1. We initiate the process by extracting the multi-level
concept prototypes (MCP) and class-specific multi-level
concept prototype distributions (MCP distribution), where
the backbone model is initialized by using the weights pre-
trained on ImageNet. The term ”CalMCP” in Lines 2 and
11 of Algorithm | denotes the process of computing the
MCP using weighted Principal Component Analysis (PCA)
to capture the global semantic information from the seg-
ments, as detailed in Section 3.3. The term ”CalMCPDist”
in Lines 3 and 12 of Algorithm 1 represents the procedure
of averaging the MCP distribution across images within the
same class, yielding the class-specific MCP distribution that
encapsulates the predominant concept distribution, as ex-
plained in Section 3.4. Throughout the training process,
these extracted MCP and MCP distributions are employed
to calculate the loss and we update them every epoch to in-
corporate the latest features learned by the model.

8. More benchmarks

In Table 8, we present additional performance compar-
isons between our Multi-Level Concept Prototypes Classi-
fier (MCPNet) and the ProtoPNet series methods [2, 14, 15,
29] across three datasets with different backbone architec-
tures. We retrained all models using their source code (i.e.
their models are also pretrained on ImageNet dataset with
batch size set to 64, following the same setting as ours) and
full images (i.e. no cropping) for fair comparisons. The

Algorithm 1: Training a MCPNet

Input: Training set
T ={T1 T2, s Ta}, (27,4 ) = Th,
validation set
V= {V1,V2., ,..,Vn}, (I\f,y}}) = Vl,
Epochs E, Concept segment size C”.

1 Initial model f weight wy with pre-trained on

ImageNet and remove the fully connected layer.

/+ Compute the multi-level concept
prototypes (MCP). Mentioned in
Section 3.3. */

2 MCP =CalMCP(f, T);

/* Compute the class-specific MCP
distribution D = {D! D% .. DV }.
Mentioned in Section 3.4. */

D = CalMCPDist(T, MCP);

for epoch € {1,..., E} do

/* Train phase %/

for (xb, yb) S {7—1 ceny 7;1} do

Fl, FQ, F3, F4 = f(xb)

split segments .S; < F,1 € {1,2,3,4}

compute loss LEKA(S))

compute loss LEP(z;,) with class-specific

MCEP distribution D
10 Minimize losses by updating w

& W

PR

/* Re—calculate MCP */

11 MCP =CalMCP(f, T)

/* Re—calculate class—specific
MCP distribution */

12 D = CalMCPDist(T, MCP)

results indicate that MCPNet achieves comparable perfor-
mance in various scenarios by offering multi-level explana-
tions, thereby providing a more comprehensive understand-
ing of the deep-learning black box.

Please kindly note that, the results of our retraining Pro-
toPNet series methods on ResNet50 differ from the reported
results in their papers since their original experimental set-
tings adopt the pretraining on iNaturalist 2017 [26] with
some of them utilizing cropped images or different batch
size during training. The notably low performance of PIP-
Net [15] on ResNet34 may be attributed to their method
not being optimized for a smaller model (while the train-
ing of ConvNeXt based on our experimental setting does
achieve the similar result as in the original PIP-Net [15] pa-
per, hence verifying the correctness of our implementation).
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Figure 7. Multi-level concept prototype samples on three datasets.
(Backbone: ResNet50)

Regarding ProtoTree [14] on CUB_200_2011, the perfor-
mance appears to be particularly sensitive to pretraining on
iNaturalist 2017, as we could not achieve satisfactory re-
sults with pretraining on ImageNet alone. It is worth not-
ing that the original paper of ProtoTree [14] only provides
quantitative results for ResNet50.

We present the performance comparison with the Pro-
toPNet series methods on the CUB_200_2011 dataset in Ta-
ble 7, where ResNet50 is adopted as backbone while be-
ing now pretrained on the iNaturalist 2017 dataset (i.e. in
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Figure 8. Multi-level concept prototype samples on three datasets.
(Backbone: Inception V3)

comparison to the results in Table 8 where the pretraining
is based on ImageNet dataset, here we follow the com-
mon setting in most of ProtoPNet series methods to have
ResNet50 pretrained on iNaturalist 2017 dataset). We can
observe that, even with different pretrained weights for the
ResNet50 backbone, our proposed MCPNet manages to
maintain performance that is on par with other methods.

Large-scale dataset We also evaluate our model on the
large-scale dataset, denoated as sampled ImageNet-1K,
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Figure 9. Multi-level concept prototype samples on three datasets.
(Backbone: ConvNeXt-tiny)

which is built by randomly sampling one-tenth of the im-
ages for each category in the ImageNet training set while
keeping the full ImageNet evaluation set. As shown by the
results summarized in Table 7, our method is capable of
learning discriminative MCP distributions and meaningful
MCPs on such large-scale dataset. In Figure 11, we also
provide example visualizations of multi-scale prototypes
learnt by MCPNet on the large-scale sampled ImageNet-
1K dataset. It is worth noting that, while most previous
prototype-based methods focus on learning class-specific
prototypes with often having their inter-class prototypes en-

_CUB 200 2011
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Figure 10. More samples of w/ and w/o CKA loss(Backbone:
ResNet50; Dataset: CUB_200.2011).

forced to be orthogonal, such orthogonality becomes quite
challenging to maintain when the number of classes in-
creases thus typically leading to diminished performance.
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Figure 11. The interpretation of images (leftmost column) based on the multi-scale prototypes (extracted on different layers of the classifi-
cation model) learnt from the large-scale sampled ImageNet-1K dataset by our MCPNet (using ResNet50 as the backbone), e.g. identifying
colors such as white and green from the lower-level layers, and recognizing entities like goats and Shetland sheepdogs from the higher-level

layers.
Sampled
Method (iN?il[]Jl’]i]iSt) ImageNet-1K
(None)
ProtoTree [13] 77.22% 9.07%
Deformable ProtoPNet [2] 85.66% 1.48%
ST-PrototPNet [28] 87.63% 58.15%
PIP-Net [14] 82.33% 0.10%
MCPNet (Ours) 86.28% 61.73%

Table 7. We here provide two experimental results: 1) The mid-
dle column reveals how MCPNet (as well as the ProtoPNet se-
ries methods), while the backbone is pretrained on the iNatural-
ist dataset, performs on the CUB dataset; 2) The rightmost col-
umn details the performance when various models are trained on
a sampled subset of ImageNet-1K and then evaluated on the entire
ImageNet-1K validation set. (Backbone : ResNet50).

9. Prototype Visualizations

To grasp the meaningful concepts represented by the
concept prototypes in MCPNet, we visualize each prototype
with the top-5 response images from the dataset, as illus-
trated in Figure 7, Figure 8, and Figure 9 (respectively for
the backbones of ResNet50, Inception V3, and ConvNeXt-
tiny). Each row of images corresponds to a single concept
prototype, showcasing prototypes from multiple levels that
represent explanations of different scales for the model.

It is noteworthy that null concept prototypes exist in
some experiments, as exemplified by the #7 prototype in
layer 3 and the #6, #10, #13, #14 prototypes in layer 4
from AWAZ2, which are shown in Figure 7. The presence of
null concepts may suggest that the model has learned a suffi-
cient number of concept prototypes, which is fewer than our
predefined number of concepts in that layer, to effectively
perform the image classification. Moreover, as the dataset
complexity increases, concept prototypes are encouraged to
learn more discriminative concepts for accurate image clas-

sification thus leading to the decrease for the number of null
prototypes, as observed in the concept prototypes from Cal-
tech101 and CUB_200_2011 in Figure 7.

9.1. The effect of CKA loss

To assess the disentangling effect of the Centered Ker-
nel Alignment (CKA) loss, we observe that, despite a slight
performance degradation when combined with the Class-
aware Concept Distribution (CCD) loss, the disentangle-
ment among concept prototypes becomes more significant
due to the presence of the CKA loss, as illustrated in Fig-
ure 10. In the absence of the CKA loss, prototypes such as
#1 and #5 in layer 2 seem to repeatedly learn the meaning
of edges, while prototypes like #4 and #5 in layer 3 repeat-
edly focus on the bird’s head with white color (i.e. there are
prototypes being less disentangled).

10. More explanation samples
10.1. Image-level explanations

In Figure 12, we illustrate how MCPNet classifies an im-
age by the MCP distribution. We compute the MCP dis-
tribution for each image, reflecting the presence of con-
cept prototypes. By aligning the image’s MCP distribution
with the class-specific MCP distribution, which signifies the
strength of concept prototypes across the majority of images
in the same class, the image is classified into the category
most resembling its concept prototype strength. Beyond im-
age classification, the MCP distribution is also employed to
generate explanations for individual instances, as depicted
in Figure 13. Each computed concept prototype strength
signifies the identified concept prototype on the image. An-
alyzing the strength of each concept prototype unveils how
the model arrives at the classification decision for each im-
age.



Accuracy

Backbone Methods Explanation AWA?2  Caltech101 CUB.200.2011
Baseline N/A 94.60% 94.78% 77.89%
ProtoTree [14] Single-Scale  90.33% 77.71% 15.79%
ResNet34 Deformable ProtoPNet [2]  Single-Scale  90.55% 95.95% 74.53%
ST-ProtoPNet [29] Single-Scale  93.56% 96.24% 77.65%
PIP-Net [15] Single-Scale  8.00% 44.52% 7.65%
MCPNet (Ours) Multi-Scale  93.02% 93.32% 76.98%
Baseline N/A 95.76% 95.76% 78.82%
ProtoTree [14] Single-Scale  92.48% 87.72% 20.88%
ResNet152 Deformable ProtoPNet [2] Single-Scale 91.16% 93.65% 76.27%
ST-ProtoPNet [29] Single-Scale  93.95% 96.09% 79.01%
PIP-Net [15] Single-Scale  64.44% 69.88% 26.87%
MCPNet (Ours) Multi-Scale  94.28% 94.54% 80.79%

Table 8. The comparison between our MCPNet and various methods on three benchmark datasets: AWA2, Caltech101, CUB-200-2011.

Several example results of further comparisons with
PIP-Net [15] in terms of explanations are shown in Fig-
ure 16, where PIP-Net [15] produces object-centric expla-
nations thus leading to misclassification when images lack
the object-centric prototypes related to the correct class or
have confusion across object-centric prototypes from var-
ious classes. Conversely, MCPNet bases its classification
on a multi-level concept response that incorporates both
high-level and low-level concepts, in which such approach
ensures that the entire spectrum of concept responses con-
tributes to the variation in the MCP distribution.

10.2. Class-level explanations

We will delve deeper into how our Multi-Level Concept
Prototype Classifier (MCPNet) provides class-level expla-
nations of the model through class-specific MCP distribu-
tions. The class-specific MCP distribution summarizes the
distribution of concept prototype strengths within images
of the same class, while our Class-aware Concept Distri-
bution (CCD) loss also encourages the difference in such
MCEP distributions across classes. The class-wise explana-
tions are derived by examining the high or low responses
of the concept prototype in class-specific MCP distribution,
which indicate the presence or absence of specific concept
prototypes for the corresponding class, as illustrated in Fig-
ure 15.

We also illustrate the distinctions between the two MCP
distributions for the fine-grained dataset and showcase the
concept prototypes contributing to the differences between
these distributions, as depicted in Figure 14.

11. Concept prototype importance and dis-
criminativeness

Our MCPNet excels at revealing the importance or dis-
criminativeness of each concept prototype, both at the im-
age and class levels. For the image level, the importance of

a concept prototype is directly inferred from the concept’s
strength, demonstrating its impact on the final prediction of
classification. For the class level, we calculate the standard
deviation of the strength for each concept within the class-
specific MCP distribution to assess its discriminativeness
across classes, as shown in Figure 17.
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Figure 12. The demonstration of the image classification process in MCPNet, which involves matching image MCP distributions to the

class-specific MCP distribution.
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Figure 13. Image-wise explanation. For each image, the explanation is derived by calculating the concept strength to form the MCP
distribution. The concept strength indicates whether the concept prototypes are prevalent in the image.
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Figure 14. Illustrates the disparity between class-specific MCP distributions on CUB_200-2011 (backbone: ResNet50). We select concepts
that elicit significantly different responses between the two class-specific MCP distributions to showcase the class-wise explanation based
on the presence or absence of concept prototypes. The colors (blue, yellow, green, and red) represent layers 1 to 4, respectively. The boxes

shown on the right side highlight the concept prototypes which contribute to the substantial differences between the two class-specific MCP
distributions
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Figure 15. Class-wise explanation. For each category, the explanation is derived by aggregating the MCP distributions for the images of

the target class. The concept strength indicates whether the concept prototypes are prevalent in most images belonging to the same class in
the dataset.
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Figure 16. More explanation comparisons between MCPNet and PIP-Net [15]. PIP-Net [15] approaches all three scenarios with object-
focused explanations, which results in inaccurate classifications. In the first scenario, PIP-Net fails to identify any matching prototypes
from the correct class within the image. For the second and third scenarios, despite PIP-Net recognizing concepts from the correct class
in the image, concepts from other classes receive higher responses, thus leading to confusion. Conversely, MCPNet employs multi-scale
concept explanations as the foundation for accurate classification. In particular, for the second scenario, the high responses to both Grizzly
Bear and buffalo classes in terms of high-level concept would lead to confusion if the classification is based solely on the high-level
responses, while such confusion can be resolved with the incorporation of low-level concept responses. Moreover, in the third scenario,
even without a direct concept match in the image — such as the concept from layer 4, potentially interpreted as sheep — MCPNet accurately
interprets the image using the constructed MCP distribution based on the holistic consideration over the distribution of concept responses

across multiple scales.
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Figure 17. Concept discriminativeness at the class level is depicted in the upper part of the figure, showcasing the standard deviation of
concept strength across classes. The higher variance in concept strength signifies that the corresponding concept prototypes play a more
discriminative role in distinguishing images.
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