
A. Proof of Theorem 1
Our proof is extended from previous studies [20]. We first specify notations and then show our proof. Given original multi-
modal input pair M = (m1,m2, . . . ,mT ) and attacked input pair (m′

1,m
′
2, . . . ,m

′
T ), we respectively use X and Y to

denote the ablated multi-modal input sampled from them without replacement. We use ei to denote the number of basic
elements (e.g., pixels) that are in both mi and m′

i, i.e., ei = |mi ∩ m′
i|. Moreover, we use Υ to denote the joint space

between X and Y . We use E = (E1, E2, . . . , ET ) to denote a variable in the space Υ.
We divide the space Υ into the following subspace:

B̃ = {E|E1 ⊆ (m1 ∩m′
1), E2 ⊆ (m2 ∩m′

2), . . . , ET ⊆ (mT ∩m′
T )}, (16)

Ã = {E|E1 ⊆ m1, E2 ⊆ m2, . . . , ET ⊆ mT } − B̃, (17)

C̃ = {E|E1 ⊆ m′
1, E2 ⊆ m′

2, . . . , ET ⊆ m′
T } − B̃. (18)

We present Neyman Pearson Lemma [10, 20, 36] for later use.

Lemma 1 (Neyman Pearson). Let X , Y be two random variables whose probability densities are respectively Pr(X = E)
and Pr(Y = E), where E ∈ Υ. Let Z be a random or deterministic functions. where Z(1|E) denotes the probability that
Z(E) = 1. Then, we have the following:

(1) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) < µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) = µ} for some µ > 0.
Let S = W1 ∪W3, where W3 ⊆ W2. If Pr(Z(X ) = 1) ≥ Pr(X ∈ S), then Pr(Z(Y) = 1) ≥ Pr(Y ∈ S).

(2) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) > µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) = µ} for some µ > 0.
Let S = W1 ∪W3, where W3 ⊆ W2. If Pr(Z(X ) = 1) ≤ Pr(X ∈ S), then Pr(Z(Y) = 1) ≤ Pr(Y ∈ S).

Proof. Let’s start by proving part (1). For convenience, we denote the complement of S as Sc. With this notation, we have
the following:

Pr(Z(Y) = 1)− Pr(Y ∈ S) (19)

=

∫
Υ

Z(1|E) · Pr(Y = E)dE −
∫
S

Pr(Y = E)dE (20)

=

∫
Sc

Z(1|E) · Pr(Y = E)dE +

∫
S

Z(1|E) · Pr(Y = E)dE −
∫
S

Pr(Y = E)dE (21)

=

∫
Sc

Z(1|E) · Pr(Y = E)dE −
∫
S

(1− Z(1|E)) · Pr(Y = E)dE (22)

≥µ · [
∫
Sc

Z(1|E) · Pr(X = E)dE −
∫
S

(1− Z(1|E)) · Pr(X = E)dE ] (23)

=µ · [
∫
Sc

Z(1|E) · Pr(X = E)dE +

∫
S

Z(1|E) · Pr(X = E)dE −
∫
S

Pr(X = E)dE ] (24)

=µ · [
∫
Υ

Z(1|E) · Pr(X = E)dE −
∫
S

Pr(X = E)dE ] (25)

=µ · [Pr(Z(X ) = 1)− Pr(X ∈ S)] (26)
≥0. (27)

Equation 23 is derived from 22 due to the fact that Pr(Y = E)/Pr(X = E) ≤ µ,∀E ∈ S, Pr(Y = E)/Pr(X = E) ≥ µ,∀E ∈
Sc, and 1−Z(1|E) ≥ 0. Similarly, we can establish the proof for part (2), but we have omitted the detailed steps for the sake
of conciseness.

For simplicity, we use ni and n′
i to denote the number of basic elements (e.g., pixels) in mi and m′

i respectively, i.e.,
ni = |mi| and n′

i = |m′
i|. Then, we have the following probability mass function:

Pr(X = E) =


1∏T

i=1 (
ni
ki
)
, if E ∈ Ã ∪ B̃,

0, otherwise.
(28)

Pr(Y = E) =


1∏T

i=1 (
n′
i

ki
)
, if E ∈ B̃ ∪ C̃,

0, otherwise.
(29)



Recall that we have ei = |m′
i ∩mi| for i = 1, 2, . . . , T , so the probability of X and Y in Ã, B̃ and C̃ can be computed as

follows:

Pr(X ∈ Ã) = 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ,Pr(X ∈ B̃) =

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ,Pr(X ∈ C̃) = 0; (30)

Pr(Y ∈ Ã) = 0,Pr(Y ∈ B̃) =

∏T
i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) ,Pr(Y ∈ C̃) = 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) . (31)

We first define δl = Pr(g(X ) = A) −
⌊Pr(g(X )=A)

∏T
i=1 (

ni
ki
)⌋∏T

i=1 (
ni
ki
)

to help rounding Pr(g(X ) = A). Then we can construct a

set S = Ã+ B̃′, where B̃′ ⊆ B̃ and Pr(X ∈ B̃′) = Pr(g(X ) = A)− δl − Pr(X ∈ Ã). We can assume Pr(g(X ) = A) >
Pr(X ∈ Ã) because otherwise Pr(g(Y) = A) is bounded by 0. Then we have Pr(g(X ) = A) ≥ Pr(X ∈ S). So we have
the following lower bound on Pr(g(Y) = A):

Pr(g(Y) = A) (32)
≥Pr(Y ∈ S) (33)

≥Pr(Y ∈ B̃′) (34)

≥Pr(X ∈ B̃′)
Pr(Y ∈ B̃′)

Pr(X ∈ B̃′)
(35)

≥
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = A)− δl − 1 +

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ) (36)

Similarly we define δu =
⌈Pr(g(X )=B)

∏T
i=1 (

ni
ki
)⌉∏T

i=1 (
ni
ki
)

−Pr(g(X ) = B), so we can construct a set S = B̃′+ C̃, where B̃′ ⊆ B̃

and Pr(X ∈ B̃′) = Pr(g(X ) = B) + δu − Pr(X ∈ C̃). Then we have Pr(g(X ) = B) ≤ Pr(X ∈ S). So we have the
following upper bound on Pr(g(Y) = B):

Pr(g(Y) = B) (37)
≤Pr(Y ∈ S) (38)

≤Pr(Y ∈ B̃′) + Pr(Y ∈ C̃) (39)

≤Pr(X ∈ B̃′)
Pr(Y ∈ B̃′)

Pr(X ∈ B̃′)
+ Pr(Y ∈ C̃) (40)

≤
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = B) + δu) + Pr(Y ∈ C̃) (41)

≤
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = B) + δu) + 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) (42)

To certify a test sample, we just need to enforce Pr(g(Y) = A) > Pr(g(Y) = B). So we get Theorem 1.

B. Details About the Datasets
We use two benchmark datasets for evaluation.

• RAVDESS. We use RAVDESS dataset [33] for the multi-modal emotion recognition task. This dataset contains video
recordings of 24 participants, each speaking with a variety of emotions. The goal is to classify these emotions into one of
seven categories: calm, happy, sad, angry, fearful, surprise, and disgust. For each participant, there are 60 distinct video
sequences. For data pre-processing, we follow previous work [2, 8] and crop or zero-pad these videos to 3.6 seconds, which



is the average video length. After pre-processing, each data sample contains 108 image frames and 79380 audio frames.
We assume that the attacker can arbitrarily modify r1 image frames (from 108 image frames of visual input) and r2 audio
frames (from 79380 audio frames of audio input). We divide the data into training, validation and test sets ensuring that
the identities of actors are not repeated across sets. Particularly, we used four actors for testing, four for validation, and the
remaining 16 for training.

• KITTI Road. For the multi-modal road segmentation task, we use KITTI Road Dataset [1], which contains 289 training
and 290 test samples across three distinct road scene categories. Notably, the initial release [1] lacks ground-truth labels
for its test samples. As a result, we divided the original training dataset into 231 data samples (80% of the data samples)
for training and 58 data samples (20% of the data samples) for testing. Each data sample consists of a RGB image, a depth
image, and the ground truth segmentation. We assume that the attacker can arbitrarily modify r1 pixels from the RGB
image and r2 pixels from the depth image for each testing input.

C. Special Cases in Multi-modal Segmentation
For segmentation tasks, the multi-modal model outputs the segmentation result for one of the input modalities mo with no

basic elements, which can be pixels or 3-D points. Then the output contains no labels. Previously, we consider the case
where the attacker perform modification attacks to mo, where we have mo = no = n′

o = |m′
o|. However, deletion and

addition attacks on mo are also possible if mo represents a point cloud. If that is the case, the process of deriving Certified
Pixel Accuracy, Certified F-score and Certified IoU can be different.

First, we think of the multi-modal segmentation model before the attack (denoted by G) as composed of multiple classifiers
denoted by G1, G2, . . . , Gno

. Each classifier Gj predicts a label Gj(M) for mj
o (the jth basic element of mo). The ground

truth y also includes no labels, denoted by y1, y2, . . . , yno
. We use Gj(M) to denote the predicted label for mj

o before the
attack and use Gj(M

′) to denote the predicted label for mj
o after the attack. We say a basic element (e.g., a pixel) mj

o is
certifiably stable if

Gj(M) = Gj(M
′),∀M′ ∈ S(M,R), and mj

o ∈ mo ∩m′
o, (43)

which means jth basic element of mo is also in m′
o and the predicted label for it is unchanged by the attack. If it also holds

that Gj(M) = yj , then we term mj
o as certifiably robust.

Then we derive Certified Pixel Accuracy (or F-score or IoU) for deletion and addition attacks on mo. We use j ∈ [no] to
denote the index of a basic element of the input modality mo. For each label, we define:

TP = |{j : (Gj(M) = yj = 1) ∧ IsStable(M, j)}|,

TN = |{j : (Gj(M) = yj = 0) ∧ IsStable(M, j)}|,

FP = |{j : Gj(M) = 1}| − TP, and

FN = |{j : Gj(M) = 0}| − TN,

where 1 indicates that this basic element has been identified as belonging to this label, while label 0 signifies the op-
posite. IsStable(M, j) is true if and only if the jth basic element of mo is certifiably stable as defined above. We
use ro denote the added (or deleted) basic elements for mo. Then for addition attacks to mo, the worst case is
that all added basic elements are not certifiably robust, so we have Certified Pixel Accuracy = TP+TN

TP+TN+FP+FN+ro
,

Certified F-score = 2TP 2

2TP 2+TP (FP+FN+ro)
, and Certified IoU = TP

TP+FP+FN+ro
. And for deletion attacks to mo, the worst

case is that all deleted basic elements are certifiably robust, so we have Certified Pixel Accuracy = TP+TN−ro
TP+TN+FP+FN−ro

,

Certified F-score = 2(TP−ro)
2

2(TP−ro)2+(TP−ro)(FP+FN) , and Certified IoU = TP−ro
TP+FP+FN−ro

. To obtain the final metrics, we
compute the average of these values across all test samples and all labels.

D. Experiment Results for the r1 > r2 Case
Here, we compare our method with randomized ablation for the case r1 > r2. For KITTI Road dataset, we set k1 to 4,000
and k2 to 6,000 for our MMCert and set k to 10,000 for randomized ablation. For RAVEDESS, we let k1 = 5 and k2 = 1,000
for our MMCert and let k = 3,000 for randomized ablation. The results of these experiments are illustrated in Figures 5
and 6, corresponding to RAVNESS and KITTI Road datasets, respectively. Our findings reveal that our method consistently
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Figure 5. Compare our MMCert with randomized ablation on RAVDESS Dataset.
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Figure 6. Compare our MMCert with randomized ablation on KITTI Road Dataset. Certified Pixel Accuracy (first row), Certified F-score
(second row) and Certified IoU (third row) are considered.
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Figure 7. Impact of N on RAVDESS dataset.

surpasses randomized ablation across all r1-r2 ratios for both datasets. This can be attributed to the fact that randomized
ablation is essentially a special case of our MMCert. Consequently, we can identify a combination of k1 and k2 that yields
equal or better results than randomized ablation. Furthermore, our MMCert is more stable than randomized ablation during
both training and testing phases because our method’s sub-sampled input space is smaller than that of randomized ablation.
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Figure 8. Impact of α on RAVDESS dataset.

Figure 9. Illustration of independent sub-sampling on KITTI Road dataset. Our method repeatedly generate predictions for subsampled
multi-modal inputs. These predictions are then aggregated to get the final prediction.

E. Impact of N and α

We study the impact of N and α on RAVDESS dataset. Figure 7 in Appendix shows the impact of N . We discover that the
certified accuracy improves with an increase in N . This enhancement occurs because a larger N yields tighter lower or upper
bounds for the label probability, given a constant confidence level α. However, the computational cost also grows linearly
with respect to N , reflecting a trade off between computational cost and certification performance. Figure 8 in Appendix
shows the impact of α. We observe that MMCert achieves better performance as α increases. This shows the trade off
between the confidence of the certification and the certification performance.


