
A. More Qualitative Results
A.1. The Properties of Appearance Noise Prior.

we fist examine the influence of the Appearance Noise Prior
on the quality of generated video results by varying the pa-
rameters λ and γ. As illustrated in Fig. 3, videos generated
with the integration of the Appearance Noise Prior display
heightened coherence and superior quality in comparison
to those generated without this prior. The introduced prior
proves beneficial by endowing the model with enhanced
capabilities to preserve distinctive characteristics of input
images, even when they deviate from the training data in
WebVid-10M.
Higher resolution generation. Besides, our empirical
findings indicate that adjusting the ratio of the Appear-
ance Noise Prior contributes to the production of high-
resolution videos by our model. As illustrated in Fig. 4, the
model demonstrates effective generation of 512x512 reso-
lution videos, surpassing its original training resolution of
320x320, thanks to the integration of the Appearance Noise
Prior.
Reduce the number of sampling steps. Additionally, we
discover that the Appearance Noise Prior plays a crucial
role in enhancing the efficiency of the diffusion process.
As illustrated in Fig. 5, in situations involving simpler mo-
tion patterns, the integration of the Appearance Noise Prior
empowers the network to produce satisfactory results even
with a reduced sampling step count, set at 5. This decrease
in steps significantly improves the efficiency of video pro-
duction. For instance, employing our base image&text-to-
video model to generate a 9-frame video at 2 fps now re-
quires only 1.3 seconds.
Adjust the amplitude of motion. During the inference
stage, the introduction of γ serves as a controllable param-
eter for adjusting the intensity of motion in the generated
videos. As illustrated in Fig. 6, setting γ = 0.02 pro-
duces results with small yet consistent movements, while
γ = −0.01 results in larger but less stable motions. Consid-
ering that the FVD metric favors stable yet discernible mo-
tion, we opted for γ = 0.02 in our FVD evaluation, striking
the best tradeoff.

A.2. More qualitative Results of MicroCinema

In this section, we present additional video generation re-
sults Fig. 7 and Fig. 8. We utilize Midjourney as the initial
stage text-to-video model. It is evident that the videos gen-
erated through our method not only maintain aesthetic qual-
ity in imagery but also exhibit clear and coherent motion.

A.3. Qualitative Comparison with Previous Work.

We provide additional examples for comparison with pre-
vious works in Fig. 9, Fig. 10, and Fig. 11. Our ap-
proach demonstrates the ability to generate visually stun-

ning videos, akin to cinematic quality. In comparison to
prior work, it showcases superior image quality, enhanced
temporal consistency, greater stylistic diversity, and im-
proved textual coherence.

B. Proof of Appearance Noise Prior
In this section, we present a proof of the compatibility of
the Appearance Noise Prior with all ODE samplers. We
demonstrate that incorporating the Appearance Noise Prior
and employing new noise as supervision does not necessi-
tate alterations to the sampler process itself. Instead, it only
requires modifications to the initial noise during sampling.

B.1. Denoising Diffusion Probabilistic Models

Firstly, we introduce the standard framework of Denoising
Diffusion Probabilistic Models (DDPM). The forward pro-
cess in DDPM, when articulated in discrete form, is as fol-
lows:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, t = 1, . . . , T, (1)

zt =
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αtzt−1 +

√
βtϵt−1. (2)

The corresponding Stochastic Differential Equation (SDE)
process of the DDPM can be represented by a unified ex-
pression, given by the following equation:

dz = f(z, x) dx+ g(x)dw, x ∈ [0, 1], (3)

where w is a standard Wiener process. To derive the ex-
pressions for f(z, x) and g(x), as T approaches infinity,
two continuous functions, ᾱ(t) and β(t), can be defined:
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t
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where ᾱt and βt are the coefficients corresponding to those
in equations Eq. (1) and Eq. (2), respectively. By substitut-
ing Eq. (5) into Eq. (2), utilizing αt = 1−βt, and consider-
ing the limit as T → ∞, βt → 0, and subsequently apply-
ing a Taylor series expansion for approximation, equation
Eq. (2) can be reformulated as follows:
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By setting x = t/T , and incorporating w into the equation,
we obtain:

z(x)− z(x− dx) = −β(x)

2
z(x− dx)dx+

√
β(x)dw. (7)



Upon simplification, we obtain the Stochastic Differential
Equation (SDE) formulation of DDPM:

dz(x) = −β(x)

2
z(x)dx+

√
β(x)dw, x ∈ [0, 1]. (8)

Comparing with Eq. (3), we can deduce:

f(z, x) = −β(x)

2
z, g(x) =

√
β(x). (9)

For the SDE process described in Eq. (3), the correspond-
ing reverse Ordinary Differential Equation (ODE) process
is represented by the following equation:

dz = f(z, x) dx− 1

2
g(x)2∇z log px(z) dx. (10)

Given that z(x) follows a Gaussian distribution
N(

√
ᾱ(x)z(0), (1 − ᾱ(x))I), its score function can

be related to the noise as follows:

∇z log px(z) = −ϵθ(z(x), x)√
1− ᾱ(x)

, (11)

where ϵθ(z(x), x) is estimated using the following loss
function:

Lθ = Eq(z(x))

[
∥ϵθ(z(x), x)− ϵ∥2

]
, (12)

where q(z(x)) denotes the noisy data distribution of z(x)
and x ∼ U [0, 1]. By utilizing equation Eq. (11), for DDPM
models that implement the ϵ-prediction, the reverse ODE
process is articulated as follows:

dz = f(z, x) dx+
ϵθ(z(x), x)

2
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g(x)2dx. (13)

By incorporating Eq. (9), the final form can be derived as
follows:
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B.2. Appearance Noise Prior

To simplify notation, let µ = λ[zc, zc, ...,zc], where zc

represents the center frame of z0 and varies with the input
video z0.This formulation explicitly demonstrates that µ is
a function of z0, thereby directly linking it to the variations
present in the input video. Then the forward process of Ap-
pearance Noise Prior is change to:
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Applying a transformation to the coefficient preceding µ in
Eq. (16) yields:
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1− ᾱt +

√
αt − ᾱt
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Similar to equation (6), considering the limit conditions
T → ∞, βt → 0, αt → 1, equation Eq. (17) can be re-
formulated as follows:
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By setting x = t/T , and incorporating w into the equation,
we obtain:
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Comparing with Eq. (3), we can deduce:

f(z, x) = −β(x)

2
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Reverse ODE process can be represented by the following
equation:

dz = f(z, x) dx− 1

2
g(x)2∇z log px(z) dx. (21)

As we employ the following form of the loss function:

Lθ = Eq(z(x))

[
∥fθ(z(x), x)− (ϵ+ µ)∥2

]
. (22)

Therefore, the relationship between the score function and
the network’s estimated value fθ becomes:

∇z log px(z) = −fθ(z(x), x)− µ√
1− ᾱ(x)

. (23)

By substituting Eq. (23) and Eq. (20) into Eq. (21), and not-
ing that the coefficient preceding µ is eliminated, we obtain
the final form of the Reverse ODE:
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2
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In the context of the Appearance Noise Prior, fθ functions
as the network’s output, paralleled by ϵθ in the DDPM
framework. Notably, Eq. (24) and Eq. (14) exhibit identi-
cal forms. This similarity enables the straightforward in-
tegration of existing ODE sampling algorithms, with the
only requisite modification being the adjustment of the ini-
tial sampling noise.



Figure 1. When the facial features are extremely small, the model struggles to generate high-quality facial representations.

Figure 2. When the facial features are large, the model performs significantly better.

B.3. Implementation of Appearance Noise Prior

The implementation of Appearance Noise Prior in noise
prediction models is straightforward. Traditionally, noise
is added and trained using samples from a standard Gaus-
sian distribution. With the Appearance Noise Prior, we
modify this approach by superimposing an image prior
λ[zc, zc, ...,zc] onto the original noise, creating a new
noise term for noise addition and supervision. During
inference with ODE samplers, the initial sampling noise
should be changed from N (0, I) to N (µ, I), where µ =
λ[zc, zc, ...,zc]. To achieve more consistent results, the
strength of the prior can be appropriately enhanced by ad-
justing µ to (λ + γ)[zc, zc, ...,zc], thereby improving the
consistency of the generated videos.

C. Implementation Details
For text-to-image stage, we use SD2.1-Base and SDXL for
Quantitative Experiments. Specific details of the samples
are provided in the Tab. 1. And we use Midjourney and
DALL-E 2 for Qualitative Results. In the Tab. 3, we present
the specific details of our image&text-to-video model. For
the spatial layer, we utilized the SD2.1-Base model archi-
tecture and initial parameters. Additionally, we incorpo-
rated the VAE provided by SD2.1-Base, along with the
CLIP text encoder, both of which were frozen during the
training process. The Tab. 2 displays the parameter count
for each component; the image&text-to-video model pos-
sesses 2.0 billion parameters, which were actively trained,
while the spatial learning rate was set to one-tenth of the
temporal learning rate.

D. Limitations
Our method is based on the latent diffusion approach of
SD2.1, utilizing an SD-pretrained VAE to encode images

Table 1. Text-to-Image Model sampling parameters, generation
time test on one A100-80GB.

Sampling Parameters SD2.1-Base SDXL

Sampler EulerEDM
Steps 50
Text guidance scale 7.5
Image resolution 512x512 1024x1024
Generation time 2 s 9 s

Table 2. Number of Model Parameters

Model Name # Params

Base image&text-to-video 2 B
CLIP text encoder 354 M
VAE 84 M

into the latent space. Currently, the VAE exhibits limited
reconstruction capabilities for small objects, particularly
small faces, leading to sub-optimal performance in these
cases, as illustrated in the Fig. 1. Conversely, the model
performs significantly better with larger faces, also demon-
strated in the Fig. 2. To address this issue, it is necessary to
re-train the VAE with increased channel size.

Another limitation of our approach is that we focused
solely on temporal super-resolution (TSR) without incorpo-
rating spatial super-resolution (SSR). Ideally, a joint spatial-
temporal super-resolution process could potentially achieve
further improvements in the quality of the generated videos.
This will be one of our future work.



Table 3. Hyperparameters for our diffusion models are detailed as follows. In the spatial layers, we utilize the pretrained SD2.1-Base, as
previously discussed. The term γ† represents a hyperparameter specific to the EulerEDM sampler, with γ† = 0 indicating the use of an
ODE sampler.

Hyperparameter Base Image&Text-to-Video Model Temporal Interpolation Model

Temporal Layers
Architecture
Input shape (C,N,H,W) 4,9,40,40 4,5,40,40
Model channels 320
Channel multipliers [1,2,4,4]
Attention resolutions [4,2,1]
Head channels 64
Positional encoding Sinusoidal
Temporal conv kernel size 3,1,1
Temporal attention size 9,1,1 5,1,1

Image Conditioning
Condition frame zc z1, zN

Extending into video Repeat Interpolate

Text Conditioning
Embedding dimension 1024 -
CA resolutions [4, 2, 1] -
CA sequence length 77 -
Drop rate 0.1 1.0

Training
# train steps 800K 40K
Learning rate 2× 10−5 2× 10−5

Batch size per GPU 4 4
# GPUs 4 4
GPU-type A100-80GB A100-80GB
Training data FPS 2 8, 30
Prediction mode eps-pred

Diffusion Setup
Diffusion steps 1000
Noise schedule Linear
β0 0.00085
βT 0.0120
Appearance noise prior λ 0.03

Sampling Parameters
Sampler EulerEDM
Steps 50
γ† 0
Text guidance scale 7.5 1.0
Appearance noise prior (λ+ γ) 0.03+0.02
Generation Time 12 s 7 s



Figure 3. The appearance noise prior is very useful for the model in maintaining the appearance of beautiful images. The prompts for the
three videos, arranged from top to bottom, are as follows: ’Red Porsche running on the road, high resolution, 8k’, ’Disney animation style,
One frosty day, when snow blanketed everything like a white quilt, a little girl named Zosia was coming home from school. With gloves
keeping her hands warm and a cozy jacket, she walked along the path’, and ’Persian cat on a beautiful Polish woman.’



Figure 4. The appearance noise prior enables the model to produce reasonable videos when the inference resolution (512x512) differs from
the resolution (320x320) used during training.

Figure 5. The appearance noise prior enables the model to produce reasonable videos with sample steps of 5, especially for simple motion.
This efficiency allows a video to be created in just 1.3 seconds.

Figure 6. Larger γ (0.02) yields smaller motion and vice versa. Smaller γ (-0.01) produces larger motion.



Figure 7. Examples from MicroCinema demonstrate that our model is capable of generating exquisite imagery and crisp motion. Benefiting
from a divide-and-conquer strategy, the model, though trained on the WebVid-10M dataset, can leverage given images to produce videos
in various styles.



Figure 8. More examples of MicroCinema.



Figure 9. We compare our method, MicroCinema, with Video LDM, VidRD, and Make-A-Video. Our videos exhibit clearer imagery and
more distinct motion compared to Video LDM. In relation to VidRD, our image quality is significantly superior. When compared with
Make-A-Video, our method demonstrates better image quality and text consistency.



Figure 10. We compare our method, MicroCinema, with Imagen Video. Our approach demonstrates superior temporal consistency, as
evidenced (first row), compared to the Imagen Video method (second row). Furthermore, our method exhibits more exquisite image
details, highlighted (third and fifth rows), while the videos produced by Imagen Video lack such detail (fourth and sixth rows).



Figure 11. We compare our method, MicroCinema, with PYoCo. Relative to PYoCo, MicroCinema excels in generating more intricate and
visually appealing videos from complex descriptions. Our method showcases more pronounced motion and finer image details.
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