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Supplementary Material

A. More Dataset Information
We used the Natural Scenes Dataset (NSD)[1] for all ex-
periments. This dataset consists of high-resolution 7-Tesla
fMRI scans collected from 8 healthy adult subjects. Every
subject was instructed to view thousands of natural images
from MS-COCO dataset[4] over the course of 30–40 scan
sessions. Each participant was exposed to 9,000-10,000 dis-
tinct images, each displayed for three seconds and repeated
three times, resulting in a total of 22,000-30,000 fMRI re-
sponse trials per participant. The fMRI responses were de-
rived from GLMSingle, with outputs being session-wise z-
scored single-trial betas [7]. Following common practices
[2, 5, 6, 8–10], our research mainly use data from 4 sub-
jects (subj01, subj02, subj05, subj07), who completed all
the scan sessions, as our experimental data. Following prior
work [8], we use preprocessed fMRI voxels from “NSD-
General” regions of interest (ROI). This ROI is defined by
NSD authors as a subset of voxels in the posterior cortex
that respond most strongly to the visual stimuli presented.

Each subject was instructed to view up to three repeated
trials per image. For the training set, we randomly choose
one single-trial fMRI signal per image for training. For the
test set, we average fMRI signals across the three same-
image repetitions for the test set, similar to [8, 9].

B. Implementation Details
Our method’s image reconstruction part relies on versatile
diffusion model[11]. In the diffusion process, we employ
the UniPCMultistep scheduler[12] to execute 20 diffusion
steps with a guidance scale of 5, setting the text-image ratio
at 0.5 to integrate both visual and semantic information. For
each test sample, we reconstruct 8 images and select the one
with the highest CLIP similarity to the stimuli as the final
result.

We implemented the aggregation function as Adaptive-
MaxPool1D in our PyTorch code, setting the output size
to 8192, which is the largest power-of-two integer smaller
than all the fMRI signal sizes. In practice, we incorporated
AdaptiveMaxPool1D into the data preprocessing pipeline
of the dataloader to ensure uniform data dimensions within
each batch. We use the last hidden layer of CLIP ViT-L/14
for the CLIP image embedding and CLIP text embedding,
results a shape of 257× 768 and 77× 768 respectively.

The total loss is balanced by setting the weights of
Limage, Ltext, Lrec, and Lcyc to 1, 1e4, 1, and 1, respec-
tively. The MindBridge models for cross-subject experi-
ments are trained for 600 epochs, and those for new-subject
adaptation are trained for 200 epochs. Across all experi-
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Figure 1. More cross-subject reconstructions of MindBridge on
subject 1, 2, 5 and 7.

ments, the batch size is set to 50 per GPU. Since Lrec and
Lcyc are designed for subject-invariant representation learn-
ing, we do not employ them in single-subject model train-
ing. Therefore, we only use Limage and Ltext for single-
subject model training.

Data augmentation are applied to target images in all ex-
periments to enhance model robustness. These include ran-
dom cropping, resizing, and random adjustments of bright-
ness, contrast, gamma, saturation, hue, sharpness, and gray
scale. In the pseudo data augmentation for new subject
adaptation, we use the same number of data points from
a previously trained subject as that of the new subject. And
all previously trained subjects are involved in the training
process.

C. More Reconstruction Results
Here we show more visual results of cross-subject recon-
struction from brain signals using one MindBridge model
trained on subject 1, 2, 5 and 7 in Figure 1.

D. Architecture of MindBridge
MindBridge comprises an aggregation function, a brain em-
bedder, a brain builder, and a brain translator. The aggre-
gation function is adaptive max pool. The brain embedder
consists of a LoRA[3]-like adapter and one linear layer. The
brain builder is basically the reverse of brain embedder. The
brain translator is a 4-layer residual MLP equipped with two



linear heads, and the hidden layer size is 2048.
The PyTorch-like architectural code for the brain embed-

der, brain builder, and brain translator is illustrated in Fig 2.

E. More Results for New Subject Adaptation
Here, we present additional results of new subject adapta-
tion for subjects 1, 2, and 5 in Table 1, Table 2, and Table
3, respectively. The results show that our method consis-
tently yields superior performance compared to the vanilla
method.

F. Effect of Text-Image Ratio
Because versatile diffusion[11] model can accept both im-
age and text inputs, we demonstrate how varying the image-
text ratio can influence the trade-off between image consis-
tency and diversity in Figure 3. A greater proportion of text
input ensures more semantic correctness while introducing
more diversity. To balance semantic accuracy and visual
consistency, we have chosen to set the image-text ratio to
0.5 in this work.

G. Ethic and Social Impact
As brain decoding technology advances, it brings critical
ethical considerations to the forefront. While it promises
enhanced communication for those with speech or motor
impairments, its potential for involuntary mind reading ne-
cessitates stringent ethical frameworks. Key elements in-
clude informed consent, robust data privacy, and a thorough
consideration of societal implications. It is crucial for the
scientific community and society to address these ethical
challenges to prevent misuse and ensure the responsible de-
velopment of brain decoding technology.
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1 class MindBridge(nn.Module):
2 def __init__(self, in_dim=8196, out_dim_image=257*768, out_dim_text=77*768, h=2048,

↪→ subj_list=[1,2,5,7])
3 self.embedder = nn.ModuleDict(subj: nn.Sequential(
4 Adapter(in_dim, 128),
5 nn.Linear(in_dim, h),
6 nn.LayerNorm(h),
7 nn.GELU(),
8 nn.Dropout(0.5)
9 ) for subj in subj_list})

10

11 self.builder = nn.ModuleDict({subj: nn.Sequential(
12 nn.Linear(h, in_dim),
13 nn.LayerNorm(in_dim),
14 nn.GELU(),
15 Adapter(in_dim, 128)
16 ) for subj in subj_list})
17

18 self.mlp = nn.ModuleList([
19 nn.Sequential(
20 nn.Linear(h, h),
21 nn.LayerNorm(h),
22 nn.GELU(),
23 nn.Dropout(0.15)
24 ) for _ in range(4)])
25

26 self.head_image = nn.Linear(h, out_dim_image)
27 self.head_text = nn.Linear(h, out_dim_text)

Figure 2. PyTorch-like pseudo code of MindBridge architecture.

Method # Data
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓
MindBridge (Scratch) 500 .097 .199 76.9% 87.3% 75.7% 82.8% .885 .560
MindBridge (Ours) 500 .142 .263 84.4% 91.4% 82.3% 89.4% .831 .500

MindBridge (Scratch) 1500 .122 .235 81.6% 91.5% 82.8% 87.7% .838 .506
MindBridge (Ours) 1500 .161 .275 87.2% 94.2% 88.5% 92.5% .784 .460

MindBridge (Scratch) 4000 .138 .266 85.8% 94.3% 87.8% 91.5% .800 .465
MindBridge (Ours) 4000 .157 .275 88.1% 95.5% 90.0% 93.9% .747 .436

Table 1. Results of new subject adaptation in limited data scenario. MindBridge(Ours) is finetuned on subject 1 from model pretrained
on subject 2, 5 and 7.



Method # Data
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓
MindBridge (Scratch) 500 .081 .200 76.0% 87.8% 77.3% 81.6% .884 .546
MindBridge (Ours) 500 .122 .265 83.2% 91.0% 83.0% 87.2% .833 .501

MindBridge (Scratch) 1500 .107 .234 82.0% 93.2% 82.7% 87.1% .835 .497
MindBridge (Ours) 1500 .143 .273 86.6% 94.2% 88.2% 91.7% .780 .459

MindBridge (Scratch) 4000 .128 .257 85.5% 94.2% 87.1% 90.1% .801 .469
MindBridge (Ours) 4000 .150 .272 88.4% 95.5% 89.8% 93.0% .745 .436

Table 2. Results of new subject adaptation in limited data scenario. MindBridge(Ours) is finetuned on subject 2 from model pretrained
on subject 1, 5 and 7.

Method # Data
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓
MindBridge (Scratch) 500 .078 .194 75.0% 88.7% 81.3% 86.7% .846 .517
MindBridge (Ours) 500 .124 .255 83.1% 91.9% 86.2% 91.2% .794 .477

MindBridge (Scratch) 1500 .107 .228 80.9% 92.4% 85.8% 90.8% .804 .481
MindBridge (Ours) 1500 .135 .262 86.1% 93.8% 89.8% 93.5% .746 .440

MindBridge (Scratch) 4000 .123 .239 84.2% 94.6% 90.1% 93.6% .760 .442
MindBridge (Ours) 4000 .150 .267 87.9% 95.6% 91.9% 95.0% .712 .418

Table 3. Results of new subject adaptation in limited data scenario. MindBridge(Ours) is finetuned on subject 5 from model pretrained
on subject 1, 2 and 5.
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Figure 3. Influence of different text-image ratio. Model is trained and tested on subject 1. We reconstruct 8 images using 8 random seeds
for illustration.
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