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1. Experiment Settings

In order to simulate real-world degradations better, most
state-of-the-art Blind SR researches examine their meth-
ods with the multi-degradations settings. However, since
there is no unified standards for how the multi-degradations
should be generated, different works usually employ it in
their own ways. In this paper, for the purpose of a fair and
credible validation of our method, we choose the widely
adopted “second-order” degradation generation settings of
Wang et al. [68] to verify our effectiveness for Blind SR.
Note that the Dropout [37], which will be compared with
our method in experiments, also adopt the same setting.

For our training, we leverage the high-resolution (HR)
images from the DIV2K [1] dataset. During the training
process, the L1 loss function is employed in combination
with the Adam optimizer. The values of 3; and (35 of the
Adam optimizer are set to 0.9 and 0.999 respectively. The
batch size is set to 16, and the low-resolution (LR) images
have dimensions of 32x32 pixels. To fine-tune the learn-
ing rate, we implement a cosine annealing learning strategy.
Initially, the learning rate is set to 2 x 10~%. The cosine an-
nealing period for adjusting the learning rate spans 500,000
iterations. We have built all our models using the PyTorch
framework and conducted the training on 4 x NVIDIA A800
GPUs. For our testing phase, we utilize several bench-
mark datasets, including Set5 [4], Set14 [71], BSD100 [52],
Mangal09 [53], Test2k [36], and Urban100 [28]. In addi-
tion, we also test our method on a realistic NTIRE 2018
SR challenge data [61] to further show our general appli-
cability. For evaluation, we primarily evaluate the model’s
performance using the Peak Signal-to-Noise Ratio (PSNR),
a commonly used metric for image quality assessment [26].

In our method, all the alignment operations are con-
ducted before the last convolutional layer (i.e., the output
layer) of the model. This setting holds true throughout all
the experiments and baseline models used in this paper. We
do this because we think aligning features at the end of the
model propagation can most effectively regularize its be-
haviors to generate similar outputs for input images with
the same content but different degradations. In addition, the
Dropout ratios used for different baseline models in this pa-
per follow the best setting of Kong et al. [37] (i.e., SRRes-
Net:0.7, RRDB:0.5, MSRN:0.5, SwinlIR:0.5). More details
of our implementation can be found in our codes.

Table 1. Ablation Studies.

Models PSNR 1
Set5 / Set14 / BSD / Urban / Manga / Test2k
SRResNet 23.53/22.23/22.34/20.49/18.40/22.95

+brute-force 23.49/22.28/21.94/20.27/18.97/22.93
+w.0 non-linear | 24.01 / 22.54 / 22.76 / 20.78 / 19.05 / 23.30
+Qurs 24.20/22.83/22.82/20.96/19.12 / 23.41
RRDB 23.62/22.45/22.48/20.66/18.50/23.02
+brute-force 23.98/22.69/22.70/19.81/18.78/23.18
+w.0 non-linear | 24.44 /22.94 / 23.45/20.97 / 19.02 / 23.39
+Ours 24.56 /23.08 / 23.48 / 21.11/ 19.28 / 23.55

2. Ablation Studies

In this section, we show the ablation studies that verify the
significance of our design. To be specific, we (1) review
the design of brutly forcing the intermediate features of two
images with identical contents but different degradations to
be exactly the same, as discussed in Sec. 4, and (2) justify
the non-linear alignment design of our method. We run the
experiments with SRResNet and RRDB on six benchmark
datasets and use PSNR as the evaluation metric. The results
are shown in Table 1. As we could observed, brutly forcing
the features to be exactly the same, although theoretically
the best, might put too much constraint on the model, lim-
iting its ability to effectively reach a local minimum, thus
yielding very unstable and unsatisfactory performances. On
the other hand, experiments run with only linear alignment
(i.e., w.0 non-linear) show certain improvements, but its
potential can be further excavated with the knowledge of
higher dimension provided by the non-linear alignment.

3. Detailed Comparisons with Dropout

As we mentioned in Sec. 5, we provide the detailed quanti-
tative comparison results of Fig. 6 in Table 2. Our method
outperforms Dropout in almost all cases, which is not sur-
prising and in line with our previous theoretical analyses.

4. Deep Degradation Representation

Following Kong et al. [37], we also adopt the deep degra-
dation representation (DDR) introduced by [47] and visu-
alized it in Fig. 1. In the figure, each point represents an
input image and different colors indicate different degra-
dations. DDR provides us a way to assess the network’s
generalization ability by peeking into the model behaviors.
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Figure 1. The visualization of the DDR clusters of SRResNet
trained with different regularizations. The CHI results are
also provided to measure the separation degree of clusters.

For example, in Fig. 1 (a) we can observe that images with
the same degradations are clustered together, which means
the model has learned to encode degradation-specific infor-
mation, leading to its poor generalization ability. On the
other hand, in Fig. 1 (d) images are clustered relying more
on their contents instead of degradations, which means the
model has become more degradation-invariant. Liu et al.
[47] further introduce the Calinski-Harabaz Index (CHI) [9]
for quantitative analysis, with a lower value indicating bet-
ter cluster separation, and thus better generalization ability.

5. More Visual Results

We provide more visual comparison results in Fig. 2, Fig. 3,
Fig. 4, and Fig. 5. They are examples of different degrada-
tion restoration results (see the captions of the figures), and
the red arrows in the figures highlight the main improve-
ments of our method from human visual perspective.



Table 2. Six datasets with eight types of degradations (clean, noise, blur, jpeg, blur+noise, blur+jpeg, noise+jpeg, and
blur+noise+jpeg) are used to evaluate the PSNR (dB) results of models with x4 resolution. The Dropout used in the experiments

refers to the one in Kong et al. [37].

Set5 [4] Set14 [71] BSD100 [52]
Models : : : . - :
clean blur noise jpeg | clean blur noise jpeg | clean blur noise  jpeg
SRResNet [38] 2485 24773 2252 23.67 | 2325 23.05 21.18 2232 |23.06 2299 2134 2247
+ Dropout (p =0.7) | 25.63 25.23 22779 24.05 | 23.73 2345 2123 2262 | 23.31 2326 2130 22.69
+ Ours 2593 25.62 23.15 2438 | 24.12 23.80 21.67 2299 | 23.83 23.64 21.77 23.04
RRDB [66] 25.18 25.12 21.79 23.82 | 23.74 2336 21.02 2259 | 2338 2332 21.00 2273
+ Dropout (p=0.5) | 26.02 26.07 2223 24.15 | 24.02 2387 2154 22.83 | 2359 23.66 21.68 22.86
+ Ours 26.78 26.55 23.02 24.70 | 24.70 2435 2191 2321 | 24.59 24.54 2347 23.67
MSRN [39] 25.25 24.89 2257 24.08 | 23.38 23.10 21.80 2253 | 2338 2330 2192 2276
+ Dropout (p =0.5) | 25.36  25.02 22.71 24.00 | 23.40 23.18 21.76 22.61 | 2345 2336 2191 22.77
+ Ours 25.81 25.52 22.84 2446 | 2393 23.64 21.86 22.83 | 23.72 23.58 22.01 22.98
SwinIR [43] 26.25 26.03 2296 2437 | 2453 2425 22.08 23.14 | 2391 2383 22.12 23.04
+ Dropout (p =0.5) | 26.32 26.08 23.12 2441 | 2457 24.19 2213 23.18 | 23.90 23.87 22.10 23.08
+ Ours 2649 2623 24.61 24.68 | 24.65 24.28 2223 23.29 | 24.04 2396 22.21 23.15
b+n b+j n+j  b4n+j | b+n b+j n+j  b4n+j | b+n b+j n+j  b4n+j
SRResNet [38] 23.27 2340 23.05 2273 | 2223 2206 2199 21.77 | 2225 2233 2222 2204
+ Dropout (p =0.7) | 23.47 23.64 2346 23.01 | 22.28 2239 2228 2198 | 22.25 2250 2241 22.16
+ Ours 23.79 2386 23.71 23.19 | 22.65 22.63 22.55 22.16 | 22.53 22.79 22.62 22.32
RRDB [66] 2344 2345 2332 2281 | 2247 2217 2229 2195|2239 2247 2242 2215
+ Dropout (p =0.5) | 23.73 23.88 23.68 23.18 | 22.58 22.59 2245 2210 | 22.53 2271 2252 2228
+ Ours 24.12 2414 2393 2326 | 22.80 22.76 22771 2221 | 22.85 2321 2297 22.54
MSRN [39] 2355 2359 2350 2295|2239 2223 2219 2197 | 2257 22.61 2245 2224
+ Dropout (p =0.5) | 23.73 23.61 23.52 23.04 | 2243 2226 2224 2196 | 22.59 22.64 2244 2220
+ Ours 23.70 23.80 23.73 23.06 | 22.52 2249 2248 22.08 | 22.68 22.73 22.56 22.26
SwinlR [43] 23.80 23.84 23.67 2299 | 2253 2273 2259 2220 |2261 2282 2261 2234
+ Dropout (p=0.5) | 24.00 23.93 23.65 23.09 | 22.73 2271 22.65 2222 | 22.68 2280 22.64 22.33
+ Ours 24.13 24.17 23.89 23.09 | 22.87 22.79 2281 2228 | 22.77 2298 22.76 2240
Test2k [36] Urban100 [28] Mangal09 [53]
Models - : . . - .
clean blur noise jpeg | clean blur noise jpeg | clean blur noise  jpeg
SRResNet [38] 2391 2371 21.77 23.11 | 21.23 21.06 19.74 20.60 | 1842 1875 18.08 18.27
+ Dropout (p =0.7) | 2426 2398 21.75 2327 | 21.57 21.25 19.75 2090 | 1898 19.12 18.42 18.66
+ Ours 24.58 2443 2217 23.65 | 21.94 21.65 20.19 21.20 | 19.18 19.46 18.90 19.02
RRDB [66] 24.16 23.64 2134 2336 | 21.57 21.18 19.61 2093 | 1859 18.64 18.30 18.41
+ Dropout (p =0.5) | 24.55 2439 2192 2353 |21.89 21.75 1992 21.12 | 18.73 19.03 18.72 18.60
+ Ours 2497 2476 2215 23.86 | 22.29 2195 20.21 2140 | 1940 19.61 18.96 19.24
MSRN [39] 2299 2383 2230 2322 |21.35 21.14 20.19 20.75 | 19.12 1931 18.72 18.89
+ Dropout (p =0.5) | 23.94 2397 2231 2333 | 2146 21.25 20.18 20.81 | 19.16 1931 18.78 18.94
+ Ours 24.52 2423 2238 2356 | 21.88 21.54 20.22 21.14 | 19.23 1935 18.84 19.01
SwinlR [43] 2478 24.57 2271 23.63 | 22.18 2190 20.56 2132 | 19.10 19.27 18.71 18.95
+ Dropout (p =0.5) | 24.81 2454 2276 23.69 | 22.27 2199 20.67 2138 | 19.15 1930 18.73 19.03
+ Ours 2498 24.76 22.84 23.80 | 22.34 22.07 20.69 2148 | 19.24 1945 1898 19.28
b+n b+j n+j  b4n+j | b+n b+j n+j b4n+j | b+n b+j n+j  b4n+j
SRResNet [38] 22.81 2287 2285 2259 | 2046 2030 2042 20.09 | 1859 1850 18.21 18.39
+ Dropout (p =0.7) | 22.89 23.11 23.04 22.70 | 2048 2049 20.66 2022 | 1894 18.85 18.66 18.72
+ Ours 23.11 2327 2322 22.82 | 20.73 20.72 2091 2037 | 19.27 19.17 1898 19.01
RRDB [66] 2293 2287 2312 2273 | 2057 2040 20.74 2024 | 1883 18.43 18.38 184l
+ Dropout (p =0.5) | 23.02 2326 23.17 22.79 | 20.53 20.70 20.84 2033 | 19.15 1881 18.59 18.71
+ Ours 23.14 2337 2334 22.82 | 20.76 20.85 21.03 2038 | 1943 1931 19.12 19.15
MSRN [39] 23.03 23.01 2294 2266 | 20.65 2043 20.56 20.19 | 19.16 19.02 18.80 18.88
+ Dropout (p =0.5) | 23.05 23.09 2296 22.68 | 20.69 2045 20.62 20.22 | 19.21 19.18 18.87 18.89
+ Ours 23.21 2321 23.18 22.78 | 20.76 20.64 20.89 20.26 | 19.19 19.18 18.92 18.93
SwinIR [43] 23.15 2327 2321 2281 |20.89 20.79 2098 2045 | 19.07 19.02 18.79 18.80
+ Dropout (p=0.5) | 23.23 2331 2326 22.82 | 2092 2091 2096 20.55 | 19.12 1898 18.75 18.84
+ Ours 23.35 2347 2345 2293 | 21.02 2098 21.12 20.53 | 19.37 1935 19.15 19.12
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Figure 2. Visual comparison with and without our approach in “bicubic+noise20+jepgS0”.

(Zoom in for best view)
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Figure 3. Visual comparison with and without our approach in “blur2+bicubic+jepg50”. (Zoom in for best view)
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Figure 4. Visual comparison with and without our approach in “bicubic+noise20+jepgS50”. (Zoom in for best view)
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Figure 5. Visual comparison



