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1. Experiment Settings

In order to simulate real-world degradations better, most
state-of-the-art Blind SR researches examine their meth-
ods with the multi-degradations settings. However, since
there is no unified standards for how the multi-degradations
should be generated, different works usually employ it in
their own ways. In this paper, for the purpose of a fair and
credible validation of our method, we choose the widely
adopted “second-order” degradation generation settings of
Wang et al. [68] to verify our effectiveness for Blind SR.
Note that the Dropout [37], which will be compared with
our method in experiments, also adopt the same setting.

For our training, we leverage the high-resolution (HR)
images from the DIV2K [1] dataset. During the training
process, the L1 loss function is employed in combination
with the Adam optimizer. The values of β1 and β2 of the
Adam optimizer are set to 0.9 and 0.999 respectively. The
batch size is set to 16, and the low-resolution (LR) images
have dimensions of 32×32 pixels. To fine-tune the learn-
ing rate, we implement a cosine annealing learning strategy.
Initially, the learning rate is set to 2× 10−4. The cosine an-
nealing period for adjusting the learning rate spans 500,000
iterations. We have built all our models using the PyTorch
framework and conducted the training on 4×NVIDIA A800
GPUs. For our testing phase, we utilize several bench-
mark datasets, including Set5 [4], Set14 [71], BSD100 [52],
Manga109 [53], Test2k [36], and Urban100 [28]. In addi-
tion, we also test our method on a realistic NTIRE 2018
SR challenge data [61] to further show our general appli-
cability. For evaluation, we primarily evaluate the model’s
performance using the Peak Signal-to-Noise Ratio (PSNR),
a commonly used metric for image quality assessment [26].

In our method, all the alignment operations are con-
ducted before the last convolutional layer (i.e., the output
layer) of the model. This setting holds true throughout all
the experiments and baseline models used in this paper. We
do this because we think aligning features at the end of the
model propagation can most effectively regularize its be-
haviors to generate similar outputs for input images with
the same content but different degradations. In addition, the
Dropout ratios used for different baseline models in this pa-
per follow the best setting of Kong et al. [37] (i.e., SRRes-
Net:0.7, RRDB:0.5, MSRN:0.5, SwinIR:0.5). More details
of our implementation can be found in our codes.

Table 1. Ablation Studies.

Models
PSNR ↑

Set5 / Set14 / BSD / Urban / Manga / Test2k
SRResNet 23.53 / 22.23 / 22.34 / 20.49 / 18.40 / 22.95
+brute-force 23.49 / 22.28 / 21.94 / 20.27 / 18.97 / 22.93
+w.o non-linear 24.01 / 22.54 / 22.76 / 20.78 / 19.05 / 23.30
+Ours 24.20 / 22.83 / 22.82 / 20.96 / 19.12 / 23.41
RRDB 23.62 / 22.45 / 22.48 / 20.66 / 18.50 / 23.02
+brute-force 23.98 / 22.69 / 22.70 / 19.81 / 18.78 / 23.18
+w.o non-linear 24.44 / 22.94 / 23.45 / 20.97 / 19.02 / 23.39
+Ours 24.56 / 23.08 / 23.48 / 21.11 / 19.28 / 23.55

2. Ablation Studies
In this section, we show the ablation studies that verify the
significance of our design. To be specific, we (1) review
the design of brutly forcing the intermediate features of two
images with identical contents but different degradations to
be exactly the same, as discussed in Sec. 4, and (2) justify
the non-linear alignment design of our method. We run the
experiments with SRResNet and RRDB on six benchmark
datasets and use PSNR as the evaluation metric. The results
are shown in Table 1. As we could observed, brutly forcing
the features to be exactly the same, although theoretically
the best, might put too much constraint on the model, lim-
iting its ability to effectively reach a local minimum, thus
yielding very unstable and unsatisfactory performances. On
the other hand, experiments run with only linear alignment
(i.e., w.o non-linear) show certain improvements, but its
potential can be further excavated with the knowledge of
higher dimension provided by the non-linear alignment.

3. Detailed Comparisons with Dropout
As we mentioned in Sec. 5, we provide the detailed quanti-
tative comparison results of Fig. 6 in Table 2. Our method
outperforms Dropout in almost all cases, which is not sur-
prising and in line with our previous theoretical analyses.

4. Deep Degradation Representation
Following Kong et al. [37], we also adopt the deep degra-
dation representation (DDR) introduced by [47] and visu-
alized it in Fig. 1. In the figure, each point represents an
input image and different colors indicate different degra-
dations. DDR provides us a way to assess the network’s
generalization ability by peeking into the model behaviors.
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Figure 1. The visualization of the DDR clusters of SRResNet
trained with different regularizations. The CHI results are
also provided to measure the separation degree of clusters.

For example, in Fig. 1 (a) we can observe that images with
the same degradations are clustered together, which means
the model has learned to encode degradation-specific infor-
mation, leading to its poor generalization ability. On the
other hand, in Fig. 1 (d) images are clustered relying more
on their contents instead of degradations, which means the
model has become more degradation-invariant. Liu et al.
[47] further introduce the Calinski-Harabaz Index (CHI) [9]
for quantitative analysis, with a lower value indicating bet-
ter cluster separation, and thus better generalization ability.

5. More Visual Results
We provide more visual comparison results in Fig. 2, Fig. 3,
Fig. 4, and Fig. 5. They are examples of different degrada-
tion restoration results (see the captions of the figures), and
the red arrows in the figures highlight the main improve-
ments of our method from human visual perspective.



Table 2. Six datasets with eight types of degradations (clean, noise, blur, jpeg, blur+noise, blur+jpeg, noise+jpeg, and
blur+noise+jpeg) are used to evaluate the PSNR (dB) results of models with ×4 resolution. The Dropout used in the experiments
refers to the one in Kong et al. [37].

Models Set5 [4] Set14 [71] BSD100 [52]
clean blur noise jpeg clean blur noise jpeg clean blur noise jpeg

SRResNet [38] 24.85 24.73 22.52 23.67 23.25 23.05 21.18 22.32 23.06 22.99 21.34 22.47
+ Dropout (p = 0.7) 25.63 25.23 22.79 24.05 23.73 23.45 21.23 22.62 23.31 23.26 21.30 22.69
+ Ours 25.93 25.62 23.15 24.38 24.12 23.80 21.67 22.99 23.83 23.64 21.77 23.04
RRDB [66] 25.18 25.12 21.79 23.82 23.74 23.36 21.02 22.59 23.38 23.32 21.00 22.73
+ Dropout (p = 0.5) 26.02 26.07 22.23 24.15 24.02 23.87 21.54 22.83 23.59 23.66 21.68 22.86
+ Ours 26.78 26.55 23.02 24.70 24.70 24.35 21.91 23.21 24.59 24.54 23.47 23.67
MSRN [39] 25.25 24.89 22.57 24.08 23.38 23.10 21.80 22.53 23.38 23.30 21.92 22.76
+ Dropout (p = 0.5) 25.36 25.02 22.71 24.00 23.40 23.18 21.76 22.61 23.45 23.36 21.91 22.77
+ Ours 25.81 25.52 22.84 24.46 23.93 23.64 21.86 22.83 23.72 23.58 22.01 22.98
SwinIR [43] 26.25 26.03 22.96 24.37 24.53 24.25 22.08 23.14 23.91 23.83 22.12 23.04
+ Dropout (p = 0.5) 26.32 26.08 23.12 24.41 24.57 24.19 22.13 23.18 23.90 23.87 22.10 23.08
+ Ours 26.49 26.23 24.61 24.68 24.65 24.28 22.23 23.29 24.04 23.96 22.21 23.15

b+n b+j n+j b+n+j b+n b+j n+j b+n+j b+n b+j n+j b+n+j
SRResNet [38] 23.27 23.40 23.05 22.73 22.23 22.06 21.99 21.77 22.25 22.33 22.22 22.04
+ Dropout (p = 0.7) 23.47 23.64 23.46 23.01 22.28 22.39 22.28 21.98 22.25 22.50 22.41 22.16
+ Ours 23.79 23.86 23.71 23.19 22.65 22.63 22.55 22.16 22.53 22.79 22.62 22.32
RRDB [66] 23.44 23.45 23.32 22.81 22.47 22.17 22.29 21.95 22.39 22.47 22.42 22.15
+ Dropout (p = 0.5) 23.73 23.88 23.68 23.18 22.58 22.59 22.45 22.10 22.53 22.71 22.52 22.28
+ Ours 24.12 24.14 23.93 23.26 22.80 22.76 22.71 22.21 22.85 23.21 22.97 22.54
MSRN [39] 23.55 23.59 23.50 22.95 22.39 22.23 22.19 21.97 22.57 22.61 22.45 22.24
+ Dropout (p = 0.5) 23.73 23.61 23.52 23.04 22.43 22.26 22.24 21.96 22.59 22.64 22.44 22.20
+ Ours 23.70 23.80 23.73 23.06 22.52 22.49 22.48 22.08 22.68 22.73 22.56 22.26
SwinIR [43] 23.80 23.84 23.67 22.99 22.53 22.73 22.59 22.20 22.61 22.82 22.61 22.34
+ Dropout (p = 0.5) 24.00 23.93 23.65 23.09 22.73 22.71 22.65 22.22 22.68 22.80 22.64 22.33
+ Ours 24.13 24.17 23.89 23.09 22.87 22.79 22.81 22.28 22.77 22.98 22.76 22.40

Models Test2k [36] Urban100 [28] Manga109 [53]
clean blur noise jpeg clean blur noise jpeg clean blur noise jpeg

SRResNet [38] 23.91 23.71 21.77 23.11 21.23 21.06 19.74 20.60 18.42 18.75 18.08 18.27
+ Dropout (p = 0.7) 24.26 23.98 21.75 23.27 21.57 21.25 19.75 20.90 18.98 19.12 18.42 18.66
+ Ours 24.58 24.43 22.17 23.65 21.94 21.65 20.19 21.20 19.18 19.46 18.90 19.02
RRDB [66] 24.16 23.64 21.34 23.36 21.57 21.18 19.61 20.93 18.59 18.64 18.30 18.41
+ Dropout (p = 0.5) 24.55 24.39 21.92 23.53 21.89 21.75 19.92 21.12 18.73 19.03 18.72 18.60
+ Ours 24.97 24.76 22.15 23.86 22.29 21.95 20.21 21.40 19.40 19.61 18.96 19.24
MSRN [39] 22.99 23.83 22.30 23.22 21.35 21.14 20.19 20.75 19.12 19.31 18.72 18.89
+ Dropout (p = 0.5) 23.94 23.97 22.31 23.33 21.46 21.25 20.18 20.81 19.16 19.31 18.78 18.94
+ Ours 24.52 24.23 22.38 23.56 21.88 21.54 20.22 21.14 19.23 19.35 18.84 19.01
SwinIR [43] 24.78 24.57 22.71 23.63 22.18 21.90 20.56 21.32 19.10 19.27 18.71 18.95
+ Dropout (p = 0.5) 24.81 24.54 22.76 23.69 22.27 21.99 20.67 21.38 19.15 19.30 18.73 19.03
+ Ours 24.98 24.76 22.84 23.80 22.34 22.07 20.69 21.48 19.24 19.45 18.98 19.28

b+n b+j n+j b+n+j b+n b+j n+j b+n+j b+n b+j n+j b+n+j
SRResNet [38] 22.81 22.87 22.85 22.59 20.46 20.30 20.42 20.09 18.59 18.50 18.21 18.39
+ Dropout (p = 0.7) 22.89 23.11 23.04 22.70 20.48 20.49 20.66 20.22 18.94 18.85 18.66 18.72
+ Ours 23.11 23.27 23.22 22.82 20.73 20.72 20.91 20.37 19.27 19.17 18.98 19.01
RRDB [66] 22.93 22.87 23.12 22.73 20.57 20.40 20.74 20.24 18.83 18.43 18.38 18.41
+ Dropout (p = 0.5) 23.02 23.26 23.17 22.79 20.53 20.70 20.84 20.33 19.15 18.81 18.59 18.71
+ Ours 23.14 23.37 23.34 22.82 20.76 20.85 21.03 20.38 19.43 19.31 19.12 19.15
MSRN [39] 23.03 23.01 22.94 22.66 20.65 20.43 20.56 20.19 19.16 19.02 18.80 18.88
+ Dropout (p = 0.5) 23.05 23.09 22.96 22.68 20.69 20.45 20.62 20.22 19.21 19.18 18.87 18.89
+ Ours 23.21 23.21 23.18 22.78 20.76 20.64 20.89 20.26 19.19 19.18 18.92 18.93
SwinIR [43] 23.15 23.27 23.21 22.81 20.89 20.79 20.98 20.45 19.07 19.02 18.79 18.80
+ Dropout (p = 0.5) 23.23 23.31 23.26 22.82 20.92 20.91 20.96 20.55 19.12 18.98 18.75 18.84
+ Ours 23.35 23.47 23.45 22.93 21.02 20.98 21.12 20.53 19.37 19.35 19.15 19.12
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Figure 2. Visual comparison with and without our approach in “bicubic+noise20+jepg50”. (Zoom in for best view)
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Figure 3. Visual comparison with and without our approach in “blur2+bicubic+jepg50”. (Zoom in for best view)
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Figure 4. Visual comparison with and without our approach in “bicubic+noise20+jepg50”. (Zoom in for best view)
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Figure 5. Visual comparison with and without our approach in “blur2+bicubic+noise20+jepg50”. (Zoom in for best view)


