
Not All Voxels Are Equal: Hardness-Aware Semantic Scene Completion
with Self-Distillation

Supplementary Material

In this supplemental document, we further provide the
following descriptions and experiments:

• Section A: More implementation details;
• Section B: Additional experiments;
• Section C: Further discussions.

A. More Implementation Details

VoxFormer-based Implementation. Following the origi-
nal settings in VoxFormer [10], we adopt monocular im-
ages from the left camera and estimated coarse geom-
etry from stereo images as inputs. The commonly used
ResNet50 backbone [5] is employed to extract image fea-
tures. The 2D-to-3D transformation module consists of
three deformable cross-attention layers, while the 3D back-
bone comprises two deformable self-attention layers. The
resolution (X ′×Y ′×Z ′) of 3D fine-grained feature (F3D

fine)
is set to 128 × 128 × 16 and the feature dimension D is
set to 128. We train both HASSC-VoxFormer-S and HASSC-
VoxFormer-T for 24 epochs with a learning rate of 2×10−4

and a batch size of one sample per GPU.
StereoScene-based Implementation. Our HASSC-
StereoScene employs stereo images from both the left
and right cameras as its inputs. We adopt EfficientNet-
B7 [15] as the image encoder for fair comparison with
StereoScene [7]. The 2D-to-3D transformation consists of
BEV constructor and stereo constructor with an auxiliary
sparse depth supervision from LiDAR point clouds like
BEVDepth [9]. Following MonoScene [2], an encoder-
decoder 3D U-Net is used as 3D backbone to process
voxel volume features. The resolution of 3D feature map
is set to 128 × 128 × 16. Both StereoScene† and HASSC-
StereoScene in our main paper are trained with 30 epochs,
where the learning rate is set to 1× 10−4 and the batch size
is set to 1 per GPU.

B. Additional Experiments

B.1. Quantitative Comparison

Comparison with LiDAR-based Methods. We provide
a comparison with existing LiDAR-based methods at dif-
ferent ranges. As shown in Tab. A1, HASSC-VoxFormer-
T exhibits superior performance, even surpassing several
LiDAR-based methods including LMSCNet [13] and SS-
CNet [14] (24.10%mIoU v.s. 22.37%mIoU / 20.02%mIoU)
at short range. This outcome underscores the effectiveness
of our approach in improving model accuracy.

Methods Modality IoU (%)↑ mIoU (%)↑
S M L S M L

JS3CNet∗ [17] LiDAR 63.47 63.40 53.09 30.55 28.12 22.67
LMSCNet∗ [13] LiDAR 74.88 69.45 55.22 22.37 21.50 17.19

SSCNet∗ [14] LiDAR 64.37 61.02 50.22 20.02 19.68 16.35

HASSC-VoxFormer-T Camera 66.05 58.01 44.58 24.10 20.27 14.74
VoxFormer-T [10] Camera 65.38 57.69 44.15 21.55 18.42 13.35

TPVFormer [6] Camera 54.75 46.03 35.62 17.15 15.27 11.30
MonoScene∗ [2] Camera 38.42 38.55 36.80 12.25 12.22 11.30

Table A1. Quantitative comparison with the existing LiDAR-based
semantic scene completion methods. ∗ denotes that the results are
reported in VoxFormer [10].

α β IoU (%)↑ mIoU (%)↑

0.1 1.0 44.66 14.40
0.2 1.0 44.58 14.74
0.4 1.0 44.46 14.34
0.2 0.8 44.64 14.71
0.2 1.2 44.48 14.47

Table A2. Ablation study on the coefficients (α, β) of linear trans-
formation from A to Hlocal.

t ω IoU (%)↑ mIoU (%)↑

1 0.75 44.52 14.25
3 0.75 44.58 14.74
5 0.75 44.61 14.57
10 0.75 44.33 14.04
3 0.5 44.46 14.61
3 1.0 44.51 14.69
1 1.0 44.53 14.50

Table A3. Ablation study on the hyper-parameters (t, ω) for hard
voxel selection strategy.

More Ablation Studies. Firstly, we conduct ablation ex-
periments on the coefficients (α, β) of linear transformation
from A to Hlocal. The results, as shown in Table A2, indicate
that the value of α has a greater impact on the completion
accuracy than β. We set α = 0.2 and β = 1.0 empirically.

Then, the ablations on the hyper-parameters (t, ω) for
hard voxel selection are provided in Tab. A3. The settings
of t and ω are crucial for selecting hard voxels to ensure
diversity, which can prevent the model from over-fitting in
local areas as described in Sec. 3.2 of main paper. As illus-
trated in Tab. A3, appropriately expanding the scope of hard
voxel selection is beneficial to improving model accuracy.
Comparison on Detailed Semantic Categories on Offi-
cial Benchmark. The detailed semantic categories compar-
ison on the test set of SemanticKITTI [1] is illustrated in
Tab. A4. HASSC-VoxFormer-T outperforms all the camera-
based methods. Notably, HASSC-VoxFormer-S shows obvi-
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LMSCNet∗ [3DV20] [13] 31.38 14.30 0.00 0.00 0.30 0.00 0.00 0.00 0.00 46.70 13.50 19.50 3.10 10.30 5.40 10.80 0.00 10.40 0.00 0.00 7.07
3DSketch∗ [CVPR20] [3] 26.85 17.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.70 0.00 19.80 0.00 12.10 3.40 12.10 0.00 16.10 0.00 0.00 6.23

AICNet∗ [CVPR20] [8] 23.93 15.30 0.00 0.00 0.70 0.00 0.00 0.00 0.00 39.30 19.80 18.30 1.60 9.60 5.00 9.60 1.90 13.50 0.10 0.00 7.09
JS3C-Net∗ [AAAI21] [17] 34.00 20.10 0.00 0.00 0.80 4.10 0.00 0.20 0.20 47.30 19.90 21.70 2.80 12.70 8.70 14.20 3.10 12.40 1.90 0.30 8.97
MonoScene [CVPR22] [2] 34.16 18.80 0.50 0.70 3.30 4.40 1.00 1.40 0.40 54.70 24.80 27.10 5.70 14.40 11.10 14.90 2.40 19.50 3.30 2.10 11.08

TPVFormer [CVPR23] [6] 34.25 19.20 1.00 0.50 3.70 2.30 1.10 2.40 0.30 55.10 27.40 27.20 6.50 14.80 11.00 13.90 2.60 20.40 2.90 1.50 11.26
OccFormer [ICCV23] [19] 34.53 21.60 1.50 1.70 1.20 3.20 2.20 1.10 0.20 55.90 31.50 30.30 6.50 15.70 11.90 16.80 3.90 21.30 3.80 3.70 12.32
NDC-Scene [ICCV23] [18] 36.19 19.13 1.93 2.07 4.77 6.69 3.44 2.77 1.64 58.12 25.31 28.05 6.53 14.90 12.85 17.94 3.49 25.01 4.43 2.96 12.58

VoxFormer-S [CVPR23] [10] 42.95 20.80 1.00 0.70 3.50 3.70 1.40 2.60 0.20 53.90 21.10 25.30 5.60 19.80 11.10 22.40 7.50 21.30 5.10 4.90 12.20
HASSC-VoxFormer-S 43.40 22.80 1.60 1.00 4.70 3.90 1.60 4.00 0.30 54.60 23.80 27.70 6.20 21.10 13.10 23.80 8.50 23.30 5.80 5.50 13.34

VoxFormer-T [CVPR23] [10] 43.21 21.70 1.90 1.60 3.60 4.10 1.60 1.10 0.00 54.10 25.10 26.90 7.30 23.50 13.10 24.40 8.10 24.20 6.60 5.70 13.41
HASSC-VoxFormer-T 42.87 23.00 1.90 1.50 2.90 4.90 1.40 3.00 0.00 55.30 25.90 29.60 11.30 23.10 14.30 24.80 9.80 26.50 7.00 7.10 14.38

Table A4. Performance comparisons of detailed semantic categories with the state-of-the-art camera-based methods on the hidden test set
of SemanticKITTI [1]. ∗ denotes that the method is converted to the camera-based model by MonoScene [2]. The top two with the highest
accuracy are highlighted in bold and underlined, respectively.
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VoxFormer-T 44.15 26.54 1.28 0.56 7.26 7.81 1.93 1.97 0.00 53.57 19.69 26.52 0.42 19.54 7.31 26.10 6.10 33.06 9.15 4.94 13.35
HASSC-VoxFormer-T∗ 44.12 26.63 0.26 0.57 6.63 8.45 2.67 2.47 0.00 56.57 20.81 29.04 0.77 19.89 7.87 27.08 7.51 34.49 9.42 5.55 14.03
HASSC-VoxFormer-T 44.58 27.33 1.07 1.14 17.06 8.83 2.25 4.09 0.00 57.23 19.89 29.08 1.26 20.19 7.95 27.01 7.71 33.95 9.20 4.81 14.74

Table A5. Performance comparisons of detailed semantic categories for ablation on the validation set of SemanticKITTI. ∗ denotes no
self-distillation during training.
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SSCNet† [CVPR17] [14] 40.82 10.13 0.10 1.68 2.72 31.80 1.36 6.24 32.95 4.41 15.23 25.84 12.04
HASSC-SSCNet 42.66 8.86 0.17 1.01 3.82 34.22 0.63 6.12 35.03 5.57 17.04 25.84 12.57

LMSCNet† [3DV20] [13] 51.97 5.60 0.00 2.03 2.66 38.00 2.21 5.91 40.05 13.52 28.14 43.93 16.55
HASSC-LMSCNet 52.38 7.53 0.36 0.66 3.07 39.77 2.83 3.37 40.47 15.29 32.20 46.57 17.47

Table A6. Quantitative comparisons with the LiDAR-based baseline models on the validation set of SemanticPOSS [12]. We only use the
hard voxel mining (HVM) head without self-training strategy. † denotes the results are reproduced from the original implementation. The
improved results compared to the corresponding baselines are marked in blue.

ous improvements in all semantic categories comparing to
VoxFormer-S. We also present class-wise mIoU results on
the validation set for ablation. As shown in Tab. A5, the
hard voxel mining yields obvious improvements on road
(+3.00% mIoU) and sidewalk (+2.52% mIoU) categories,
which possess substantial volumes and regular geometries.
The self-distillation combined with HVM head further im-
proves the accuracy on truck/car/bicyclist benefiting from

the consistency in geometry.
More Experiments on Other Dataset. To examine the
scalability of our proposed hard voxel mining (HVM) head,
we conduct experiments on another challenging dataset
SemanticPOSS [12]. Since SemanticPOSS is collected in
campus scenarios, there are many moving objects like per-
son and rider that are hard to identify. SemanticPOSS con-
tains six sequences and only provides LiDAR point clouds
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Figure A1. Additional visual results of our method (HASSC-VoxFormer-T) and the state-of-the-art camera-based methods on the validation
set of SemanticKITTI.
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Figure A2. The number of the non-empty voxels in selected
hard voxels changes during training on both student and teacher
branches.

as input. We follow the original setting and split the (00-01,
03-05) / 02 as training/validation set. LiDAR-based meth-
ods including SSCNet [14] and LMSCNet [13] are utilized
as baseline models. We only replace the vanilla completion
head with HVM head and retrain these models. Note that the
self-training strategy is not used here. As shown in Tab. A6,
our HVM head achieves stable improvements with various
models including SSCNet (+0.53%mIoU, +1.84%IoU) and
LMSCNet (+0.92%mIoU, +0.41%IoU).

B.2. Qualitative Comparison

Visualization of Selected Hard Voxels. We visualize the
number of the non-empty voxels in selected hard voxels
on both student and teacher branches. As illustrated in
Fig. A2, the number of the non-empty voxels continues
to increase during training, which indicates that our dy-
namic hard voxel selection strategy favors more difficult
non-empty voxels.
Comparison on Validation Set. Here, we provide more
qualitative comparisons on the validation set of Se-
manticKITTI. As shown in Fig. A1, our method (HASSC-

VoxFormer-T) obtains stable completion results in complex
scenarios compared to other camera-based methods.
Comparison on Test Set. Additionally, several qualitative
comparisons on the test set are presented in Fig. A4. Our
method consistently performs well on the more challenging
test set with 11 sequences.

C. Further Discussions
C.1. Explanatory Experiments

Failure Cases. There are mainly two factors affecting per-
formance of our method: 1) some categories exhibit a long-
tail distribution with infrequent occurrence, like bicyclist
(0.07%), traffic sign (0.08%) and trunk (0.51%); 2) certain
classes, like vegetation, often have sever occlusion, which
brings in difficulties in geometry estimation. We provide
several failure cases caused by the false geometric estima-
tion in the Fig. A3.

Ground Truth VoxFormer-T Ours

Figure A3. Visualization of some typical failure cases.

About the Formulation of Hardness. We have explored
alternative designs of hardness, such as utilizing the highest
confidence (“A”) or loss magnitude (“B”) as indicators for
global hardness, and quadratic function encoding for local
hardness (“C”). The Tab. A7 indicates that Eq.1 and Eq.3
of main paper can better integrate global information with
local geometric priors.



Method Design A Design B Design C Ours

mIoU (%)↑ 14.21 14.01 14.31 14.74

Table A7. Comparison of different design options.

About the Impact of Empty Voxels. Empty voxels, typ-
ically more numerous, are simpler to classify. We lever-
age prior ratio information of empty/non-empty voxels
with various hardness levels for hard voxel weighting and
model training to enhance voxel-wise SSC. As shown in
the Tab. A8, HASSC effectively accelerates network con-
vergence and attains promising accuracy.

Epoch 2 4 6 8 12 Final (best)

VoxFormer-T 10.57 11.91 11.95 12.47 13.06 13.33
HASSC-VoxFormer-T 10.95 12.37 13.66 14.20 14.74 14.74

Table A8. Illustration of accuracy variations during training.

C.2. Limitation and Future Work

Although having achieved promising improvements over
existing methods especially at short/middle range with our
proposed scheme, there is still a large performance gap
between camera-based methods and LiDAR-based meth-
ods [4, 16] in the full range. Besides, over-fitting on hard
voxels is indeed a potential problem. Our method is also
constrained by the inaccurate geometry estimation and the
long-tail distribution.

In the future, we will leverage neural radiance fields
(NeRFs) [11] to extract the geometric and semantic clues
contained in the image sequences to further improve the
performance of vision-centric methods.
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Figure A4. Visual results of our method (HASSC-VoxFormer-T) and other camera-based methods on the hidden test set of SemanticKITTI.


