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A. Implementation Details

We follow the setting of CUT [4], except that the PatchNCE
loss is repalced by our Weighted PatchNCE (WPNCE). In
detail, we use a 9-block Resnet-based generator [2] with
PatchGAN [1]. We define our encoder as the first half of the
generator, and accordingly extract our multilayer features
from five evenly distributed points of the encoder. For the
O-MLPs, we set their numbers of layers to 2 with 256 units
in each layer and 7 to 0.07.

We train our full model for 400 epochs, keeping the
learning rate at 2e~* for the first 200 epochs, and linearly
decay the learning rate in the last 200 epochs. Each sub-
net of the network is optimized by the Adam optimizer [3]
(61 = 0.5, B2 = 0.999). The samples are randomly cropped
into patches of size 256 x 256 during training.

B. Proofs of Theorems

Theorem 1. Given V f(-) in Euclidean space and grad f(-)
defined as follows:

grad f(8) = Vf(6) - ;067V () - LOVf(©)"6

ey
grad f(©) is the orthogonal projection of V f(©) onto the
tangent space of the Stiefel manifold.

Proof 1. If grad f(-) is the orthogonal projection of V f(-)
onto the tangent space of the Stiefel manifold, according to
the triangle law of vector addition, we have:

((grad f(-) =V [(-)),grad f(-)) =0 2

where (-, ) is the inner product. In particular, for Z;, Z5 on
the Stiefel manifold:

(Z1,Zy) = tr(Z] Z3) 3)

By substituting Eq. | and 3 into the left-hand side of Eq.

2, we obtain:
((grad f(©) — Vf(©)), grad f(©))
:tr(%Vf(G)TG)G)TVf(G)) - in(G)T(%@T@@TVf(G)
- %w(e)T@eT@w(e)Te + %@TVf(G)GTVf(G))
- %@TVf(G)GTG)G)TVf(G)) - i@TVf(e)eT@W(e)T@)
)

Due to © € St(p,n), O satisfies ©1'© = I. Then Eq. 4
can be simplify as:

((grad f(©) — V f(0©)), grad f(©))
:itr(Vf(@)T@GTVf(@)) - itr(Vf(@)TGVf(Q)TG) )

+ %tr(@TVf(G)@TVf(G)) - %tr(@TVf(@)Vf(G)T@)
Due to tr(AB) = tr(BA) and tr(A) = tr(AT), we have
tr(Vf(©)Tee’Vf(0)) =tr(0'V(©)Vf(©)'e)

(6)
and
tr(©@TVf(©)0TVf(8)) = tr(Vf(©)'eVf(©)Te)
(7

So Eq. 5 equals to 0, demonstrating grad f(©) is the or-
thogonal projection of V f(©). Furthermore, it can also
prove that ©T grad f(0) + grad f(©)T f(©) = 0, which
means that grad f(©) is on the tangent space.
Theorem 2. Given a point = = O —~ygrad f(O) on the tan-
gent space T St(p,n) of a point on a Stiefel manifold, let
retraction operation be Re (2) = (O+E2)(I+E27E) "2, the
point = after retraction operation satisfies orthogonal con-
straint:

No(2)"Re(E) =1 ®)
i.e., Ro(E) is on St(p, n).
Proof 2. The parameter after retraction fRg satisfies:

Ro(E) N6 (E) = U+E272) 2 (0+2)T(0+2)(I+E75)"7 ()
For = on the tangent space ToSt(p, n), = satisfies:

e'=+=Te =0 (10)
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So

1

Ro(E) " Re(E) = ([ +ET2) (I +ETE)(I+ETE) =

1D
where (I + ZT'Z) € RP*P. Eigenvalue decomposition of
(I +=TZ) can get:

(I4+2T2) = pAP™! (12)

where A stands for a diagonal matrix, and PT P = I. Sub-
sequently, we have:

Ro(2) " Ro () = PA 2 PTPAPTPA 2 PT

13)

Thus 9 (2) satisfies the orthogonal constraint.
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