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A. Implementation Details001

We follow the setting of CUT [4], except that the PatchNCE002
loss is repalced by our Weighted PatchNCE (WPNCE). In003
detail, we use a 9-block Resnet-based generator [2] with004
PatchGAN [1]. We define our encoder as the first half of the005
generator, and accordingly extract our multilayer features006
from five evenly distributed points of the encoder. For the007
O-MLPs, we set their numbers of layers to 2 with 256 units008
in each layer and τ to 0.07.009

We train our full model for 400 epochs, keeping the010
learning rate at 2e−4 for the first 200 epochs, and linearly011
decay the learning rate in the last 200 epochs. Each sub-012
net of the network is optimized by the Adam optimizer [3]013
(β1 = 0.5, β2 = 0.999). The samples are randomly cropped014
into patches of size 256× 256 during training.015

B. Proofs of Theorems016

Theorem 1. Given ∇f(·) in Euclidean space and grad f(·)017
defined as follows:018

grad f(Θ) = ∇f(Θ)− 1

2
ΘΘT∇f(Θ)− 1

2
Θ∇f(Θ)

T
Θ

(1)019
grad f(Θ) is the orthogonal projection of ∇f(Θ) onto the020
tangent space of the Stiefel manifold.021

Proof 1. If grad f(·) is the orthogonal projection of ∇f(·)022
onto the tangent space of the Stiefel manifold, according to023
the triangle law of vector addition, we have:024

⟨(grad f(·)−∇f(·)), grad f(·)⟩ = 0 (2)025

where ⟨·, ·⟩ is the inner product. In particular, for Z1, Z2 on026
the Stiefel manifold:027

⟨Z1, Z2⟩ = tr(ZT
1 Z

T
2 ) (3)028

By substituting Eq. 1 and 3 into the left-hand side of Eq.029

2, we obtain: 030

⟨(grad f(Θ)−∇f(Θ)), grad f(Θ)⟩

=tr(
1

2
∇f(Θ)TΘΘT∇f(Θ)−

1

4
∇f(Θ)TΘΘTΘΘT∇f(Θ)

−
1

4
∇f(Θ)TΘΘTΘ∇f(Θ)TΘ+

1

2
ΘT∇f(Θ)ΘT∇f(Θ)

−
1

4
ΘT∇f(Θ)ΘTΘΘT∇f(Θ)−

1

4
ΘT∇f(Θ)ΘTΘ∇f(Θ)TΘ)

(4)

031

Due to Θ ∈ St(p, n), Θ satisfies ΘTΘ = I . Then Eq. 4 032
can be simplify as: 033

⟨(grad f(Θ)−∇f(Θ)), grad f(Θ)⟩

=
1

4
tr(∇f(Θ)TΘΘT∇f(Θ))−

1

4
tr(∇f(Θ)TΘ∇f(Θ)TΘ)

+
1

4
tr(ΘT∇f(Θ)ΘT∇f(Θ))−

1

4
tr(ΘT∇f(Θ)∇f(Θ)TΘ)

(5) 034

Due to tr(AB) = tr(BA) and tr(A) = tr(AT ), we have 035

tr(∇f(Θ)TΘΘT∇f(Θ)) = tr(ΘT∇f(Θ)∇f(Θ)TΘ)
(6) 036

and 037

tr(ΘT∇f(Θ)ΘT∇f(Θ)) = tr(∇f(Θ)TΘ∇f(Θ)TΘ)
(7) 038

So Eq. 5 equals to 0, demonstrating grad f(Θ) is the or- 039
thogonal projection of ∇f(Θ). Furthermore, it can also 040
prove that ΘT grad f(Θ) + grad f(Θ)T f(Θ) = 0, which 041
means that grad f(Θ) is on the tangent space. 042
Theorem 2. Given a point Ξ = Θ−γgrad f(Θ) on the tan- 043
gent space TΘSt(p, n) of a point on a Stiefel manifold, let 044

retraction operation be RΘ(Ξ) = (Θ+Ξ)(I+ΞTΞ)−
1
2 , the 045

point Ξ after retraction operation satisfies orthogonal con- 046
straint: 047

RΘ(Ξ)
TRΘ(Ξ) = I (8) 048

i.e., RΘ(Ξ) is on St(p, n). 049
Proof 2. The parameter after retraction RΘ satisfies: 050

RΘ(Ξ)
T
RΘ(Ξ) = (I+Ξ

T
Ξ)

− 1
2 ((Θ+Ξ)

T
(Θ+Ξ))(I+Ξ

T
Ξ)

− 1
2 (9) 051

For Ξ on the tangent space TΘSt(p, n), Ξ satisfies: 052

ΘTΞ + ΞTΘ = 0 (10) 053
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So054

RΘ(Ξ)
TRΘ(Ξ) = (I +ΞTΞ)−

1
2 (I +ΞTΞ)(I +ΞTΞ)−

1
2

(11)055
where (I + ΞTΞ) ∈ Rp×p. Eigenvalue decomposition of056
(I + ΞTΞ) can get:057

(I + ΞTΞ) = PΛP−1 (12)058

where Λ stands for a diagonal matrix, and PTP = I . Sub-059
sequently, we have:060

RΘ(Ξ)
TRΘ(Ξ) = PΛ− 1

2PTPΛPTPΛ− 1
2PT

= PΛ− 1
2ΛΛ− 1

2PT

= PPT

= I

(13)061

Thus RΘ(Ξ) satisfies the orthogonal constraint.062
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