Supplementary Material of "ODCR: Orthogonal Decoupling Contrastive Regularization for Unpaired Image Dehazing"

Anonymous CVPR submission

Paper ID 909

A. Implementation Details

We follow the setting of CUT [4], except that the PatchNCE loss is repalced by our Weighted PatchNCE (WPNCE). In detail, we use a 9-block Resnet-based generator [2] with PatchGAN [1]. We define our encoder as the first half of the generator, and accordingly extract our multilayer features from five evenly distributed points of the encoder. For the O-MLPs, we set their numbers of layers to 2 with 256 units in each layer and τ to 0.07.

We train our full model for 400 epochs, keeping the learning rate at $2 e^{-4}$ for the first 200 epochs, and linearly decay the learning rate in the last 200 epochs. Each subnet of the network is optimized by the Adam optimizer [3] ($\beta_{1}=0.5, \beta_{2}=0.999$). The samples are randomly cropped into patches of size 256×256 during training.

B. Proofs of Theorems

Theorem 1. Given $\nabla f(\cdot)$ in Euclidean space and $\operatorname{grad} f(\cdot)$ defined as follows:

$$
\begin{equation*}
\operatorname{grad} f(\Theta)=\nabla f(\Theta)-\frac{1}{2} \Theta \Theta^{T} \nabla f(\Theta)-\frac{1}{2} \Theta \nabla f(\Theta)^{T} \Theta \tag{1}
\end{equation*}
$$

$\operatorname{grad} f(\Theta)$ is the orthogonal projection of $\nabla f(\Theta)$ onto the tangent space of the Stiefel manifold.
Proof 1. If $\operatorname{grad} f(\cdot)$ is the orthogonal projection of $\nabla f(\cdot)$ onto the tangent space of the Stiefel manifold, according to the triangle law of vector addition, we have:

$$
\begin{equation*}
\langle(\operatorname{grad} f(\cdot)-\nabla f(\cdot)), \operatorname{grad} f(\cdot)\rangle=0 \tag{2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product. In particular, for Z_{1}, Z_{2} on the Stiefel manifold:

$$
\begin{equation*}
\left\langle Z_{1}, Z_{2}\right\rangle=\operatorname{tr}\left(Z_{1}^{T} Z_{2}^{T}\right) \tag{3}
\end{equation*}
$$

By substituting Eq. 1 and 3 into the left-hand side of Eq.

2, we obtain:
$\langle(\operatorname{grad} f(\Theta)-\nabla f(\Theta)), \operatorname{grad} f(\Theta)\rangle$
$=\operatorname{tr}\left(\frac{1}{2} \nabla f(\Theta)^{T} \Theta \Theta^{T} \nabla f(\Theta)-\frac{1}{4} \nabla f(\Theta)^{T} \Theta \Theta^{T} \Theta \Theta^{T} \nabla f(\Theta)\right.$
$-\frac{1}{4} \nabla f(\Theta)^{T} \Theta \Theta^{T} \Theta \nabla f(\Theta)^{T} \Theta+\frac{1}{2} \Theta^{T} \nabla f(\Theta) \Theta^{T} \nabla f(\Theta)$
$\left.-\frac{1}{4} \Theta^{T} \nabla f(\Theta) \Theta^{T} \Theta \Theta^{T} \nabla f(\Theta)-\frac{1}{4} \Theta^{T} \nabla f(\Theta) \Theta^{T} \Theta \nabla f(\Theta)^{T} \Theta\right)$
Due to $\Theta \in S t(p, n), \Theta$ satisfies $\Theta^{T} \Theta=I$. Then Eq. 4 can be simplify as:

$$
\begin{aligned}
& \langle(\operatorname{grad} f(\Theta)-\nabla f(\Theta)), \operatorname{grad} f(\Theta)\rangle \\
= & \frac{1}{4} \operatorname{tr}\left(\nabla f(\Theta)^{T} \Theta \Theta^{T} \nabla f(\Theta)\right)-\frac{1}{4} \operatorname{tr}\left(\nabla f(\Theta)^{T} \Theta \nabla f(\Theta)^{T} \Theta\right) \\
& +\frac{1}{4} \operatorname{tr}\left(\Theta^{T} \nabla f(\Theta) \Theta^{T} \nabla f(\Theta)\right)-\frac{1}{4} \operatorname{tr}\left(\Theta^{T} \nabla f(\Theta) \nabla f(\Theta)^{T} \Theta\right)
\end{aligned}
$$

Due to $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$, we have

$$
\begin{equation*}
\operatorname{tr}\left(\nabla f(\Theta)^{T} \Theta \Theta^{T} \nabla f(\Theta)\right)=\operatorname{tr}\left(\Theta^{T} \nabla f(\Theta) \nabla f(\Theta)^{T} \Theta\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\Theta^{T} \nabla f(\Theta) \Theta^{T} \nabla f(\Theta)\right)=\operatorname{tr}\left(\nabla f(\Theta)^{T} \Theta \nabla f(\Theta)^{T} \Theta\right) \tag{7}
\end{equation*}
$$

So Eq. 5 equals to 0 , demonstrating $\operatorname{grad} f(\Theta)$ is the orthogonal projection of $\nabla f(\Theta)$. Furthermore, it can also prove that $\Theta^{T} \operatorname{grad} f(\Theta)+\operatorname{grad} f(\Theta)^{T} f(\Theta)=0$, which means that $\operatorname{grad} f(\Theta)$ is on the tangent space.
Theorem 2. Given a point $\Xi=\Theta-\gamma \operatorname{grad} f(\Theta)$ on the tangent space $T_{\Theta} S t(p, n)$ of a point on a Stiefel manifold, let retraction operation be $\mathfrak{R}_{\Theta}(\Xi)=(\Theta+\Xi)\left(I+\Xi^{T} \Xi\right)^{-\frac{1}{2}}$, the point Ξ after retraction operation satisfies orthogonal constraint:

$$
\begin{equation*}
\mathfrak{R}_{\Theta}(\Xi)^{T} \mathfrak{R}_{\Theta}(\Xi)=I \tag{8}
\end{equation*}
$$

i.e., $\mathfrak{R}_{\Theta}(\Xi)$ is on $S t(p, n)$.

Proof 2. The parameter after retraction \mathfrak{R}_{Θ} satisfies:

$$
\mathfrak{R}_{\Theta}(\Xi)^{T} \mathfrak{R}_{\Theta}(\Xi)=\left(I+\Xi^{T} \Xi\right)^{-\frac{1}{2}}\left((\Theta+\Xi)^{T}(\Theta+\Xi)\right)\left(I+\Xi^{T} \Xi\right)^{-\frac{1}{2}}
$$

For Ξ on the tangent space $T_{\Theta} S t(p, n), \Xi$ satisfies:

$$
\begin{equation*}
\Theta^{T} \Xi+\Xi^{T} \Theta=0 \tag{10}
\end{equation*}
$$

So
$\mathfrak{R}_{\Theta}(\Xi)^{T} \mathfrak{R}_{\Theta}(\Xi)=\left(I+\Xi^{T} \Xi\right)^{-\frac{1}{2}}\left(I+\Xi^{T} \Xi\right)\left(I+\Xi^{T} \Xi\right)^{-\frac{1}{2}}$
where $\left(I+\Xi^{T} \Xi\right) \in \mathbb{R}^{p \times p}$. Eigenvalue decomposition of $\left(I+\Xi^{T} \Xi\right)$ can get:

$$
\begin{equation*}
\left(I+\Xi^{T} \Xi\right)=P \Lambda P^{-1} \tag{12}
\end{equation*}
$$

where Λ stands for a diagonal matrix, and $P^{T} P=I$. Subsequently, we have:

$$
\begin{align*}
\mathfrak{R}_{\Theta}(\Xi)^{T} \mathfrak{R}_{\Theta}(\Xi) & =P \Lambda^{-\frac{1}{2}} P^{T} P \Lambda P^{T} P \Lambda^{-\frac{1}{2}} P^{T} \\
& =P \Lambda^{-\frac{1}{2}} \Lambda \Lambda^{-\frac{1}{2}} P^{T} \tag{13}\\
& =P P^{T} \\
& =I
\end{align*}
$$

Thus $\mathfrak{R}_{\Theta}(\Xi)$ satisfies the orthogonal constraint.

References

[1] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125-1134, 2017. 1
[2] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 694-711. Springer, 2016. 1
[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 1
[4] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image translation. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part IX 16, pages 319-345. Springer, 2020. 1

