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1. Implementation Details
Humanoid State. In our policy, the state of the humanoid,
denoted as spt , comprises joint positions jt ∈ R24×3, rota-
tions qt ∈ R24×6, linear velocities vt ∈ R24×3, and angular
velocities ωt ∈ R24×3. These components are normalized
with respect to the agent’s heading and root position in our
simulator. The rotation qt is represented using the 6-degree-
of-freedom rotation representation [7].
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Figure 1. Our simulated motion near a moving car allows for inter-
active actions, such as waving, when the pedestrian stops or turns
around. This enhances the realism of the simulated motion.

Network Architecture. In this study, we adopt the net-
work structure from PACER [2], which separates the pol-
icy network into a task feature processor and an action en-
coder. For the task processor, we employ a convolutional
neural network (CNN) to process the terrain map, follow-
ing the approach outlined in [2]. Additionally, we utilize
an MLP network to encode the trajectory, reference motion,
and tracking mask. Subsequently, we concatenate the hu-
manoid state with the output of the task processor to form
the input of the action network. The action network consists
of MLP layers with ReLU activations, comprising two lay-
ers with 2048 and 1024 units, respectively. The output of
this action network, indicated as at ∈ R23×3, corresponds
to the PD target of the joints on the SMPL [1] human body,
excluding the root joint.

2. Additional Results.
The trajectory following results are presented in Table 1.
We mainly compare our method with the approaches pro-
posed in [2] and [4]. We evaluate these different methods on

Table 1. Comparison of trajectory following task with PACER [2]
and [4]. Our method achieves a comparable result with PACER
and a significantly better result than [4].

Method PACER [2] Wang et.al [4] Ours
Error ↓ 0.118 0.164 0.123

the synthetic terrain and trajectories similar to training these
policies. The metric is the average deviation of the char-
acter from trajectories. As depicted in the table, PACER
achieves the most favorable results. Our method demon-
strates performance comparable to that of PACER in terms
of trajectory following. However, it is worth noting that the
kinematics policy employed in [4] exhibits limitations when
dealing with complex terrains without fine-tuning.

Additionally, as shown in Figure 1, when dealing with
a simulated car, we can manually determine the trajectory
and movements of the pedestrian to enable more grounded
reactions. For example, we can incorporate actions such as
waving in the car or altering the direction of movement. In
this work, we focus mainly on the ”on-demand” prospect on
increasing the capabilities of simulators, which can pave the
way for a more antonymous response in intelligent agents.

3. System Details.
Figure 2 showcases the user interface (UI) we have devel-
oped, which allows users to control the animation within the
specified driving scenario. Through this system, users have
the capability to modify the trajectory, motion content, body
parts, and the starting time of the motion content seamlessly
in a zero-shot manner. Further details regarding this system
can be found in our supplementary video.

4. Further Discussion.
In the realm of integrating language-based motion gen-
eration models with physics simulators, recent work has
emerged to address this area. Physdiff [6] stands as a no-
table contribution, employing a whole-body imitator within
the motion diffusion model’s denoising process to achieve
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Figure 2. User interface (UI) of our on-demand animation controller. Our system is capable of changing trajectory, environment, motion
content, and body parts for pedestrian animation in driving scenarios.



physically plausible animations. On the other hand, InsAc-
tor [3] and MoConVQ [5] rely on model-based character
simulation. However, these approaches overlook the influ-
ence of terrain in pedestrian animation and lack body part
control. Consequently, these methods are limited to control-
ling the entire body joints based on language instructions
solely on flat-ground scenarios. In contrast, our framework
offers enhanced flexibility in control while also facilitat-
ing cooperation with real-world motions on various terrains.
Additionally, with the advances in motion content synthesis
by language-based motion models, our framework has the
potential to generate superior animations in driving scenar-
ios.
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