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Supplementary Material

A. Implementation Details
In this section, we introduce the implementation details of
PanoOcc.

Image Backbone. The backbone used in our approach
includes R50 [14], R101-DCN [10], and InternImage-
XL [53], with output multi-scale features from FPN [30]
at sizes of 1/8,1/16,1/32 and 1/64.

Voxel Queries. The initial resolution of the voxel queries
is 50x50x16 for H,W,Z. We use an embedding dimension
D of 256, and learnable 3D position encoding is added to
the voxel queries.

Occupancy Encoder. The camera view encoder includes
3 layers, with each layer consisting of voxel self-attention,
voxel cross-attention, norm layer, and feed-forward layer,
with both M1 and M2 set to 4. The temporal encoder fuses
4 frames (including the current frame) with a time inter-
val of 0.5s. Our key difference from previous BEV-based
methods primarily lies in the learning of voxel features. We
designed voxel cross-attention and voxel self-attention to
facilitate the interaction between multi-scale image features
and voxel queries.
• Voxel Cross-Attention: Specifically, for a voxel query
q located at (i, j, k), the process of voxel cross-attention
(VCA) can be formulated as follows:
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where n indexes the camera view, m indexes the ref-
erence points, and M1 is the total number of sampling
points for each voxel query. v is the set of image views
for which the projected 2D point of the voxel query can
fall on. Fn is the image features of the n-th camera view.
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where Pn 2 R3⇥4 is the projection matrix of the n-
th camera. (un,m

ijk
, v

n,m
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) denotes the m-th 2D reference

point on n-th image view. dn,m
ijk

is the depth in the camera
frame.

• Voxel Self-Attention: Voxel self-attention (VSA) facili-
tates the interaction between voxel queries. For a voxel
query q located at (i, j, k), it only interacts with the voxel
queries at the reference points nearby. The process of
voxel self-attention can be formulated as follows:

VSA(q,Q) =
M2X

m=1

DA(q,Ref
m

i,j,k
,Q) (8)

where m indexes the reference points, and M2 is the to-
tal number of reference points for each voxel query. DA
represents deformable attention. Contrary to the refer-
ence points on the image plane in voxel cross-attention,
Ref
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i,j,k
in voxel self-attention is defined on the BEV

plane.
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where (xm
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, zk) denotes the m-th reference point for

query q. These sampling points share the same height
zk, but with different learnable offsets for (xm

i
, y

m

j
). This

encourages the voxel queries to interact in the BEV plane,
which contains more semantic information.

Occupancy Decoder. The voxel upsample module em-
ploys 3 layers of 3D deconvolutions to upscale 4x for H

and W , and 2x for Z, with detailed parameters in the Ta-
ble 9. The upsampled voxel features have dimensions of
200x200x32 for H 0

,W
0
, Z

0, and a feature dimension D
0 of

64.

Task Head. The segmentation head has 2 MLP layers
with a hidden dimension of 128 and uses softplus [66] as
the activation function. The number of object queries for
the detection head is set to 900, and has 6 layers decoder,
similar to [26].

B. Test Set Performance
3D Semantic Segmentation. In Table 8, we adopt the
R101-DCN [10] initialized from FCOS3D [52] checkpoint,
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MINet [22] LiDAR 56.3 54.6 8.2 62.1 76.6 23.0 58.7 37.6 34.9 61.5 46.9 93.3 56.4 63.8 64.8 79.3 78.3
PolarNet [64] LiDAR 69.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
PolarSteam [6] LiDAR 73.4 71.4 27.8 78.1 82.0 61.3 77.8 75.1 72.4 79.6 63.7 96.0 66.5 76.9 73.0 88.5 84.8
JS3C-Net [59] LiDAR 73.6 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1
AMVNet [32] LiDAR 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVNAS [47] LiDAR 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
Cylinder3D++ [70] LiDAR 77.9 82.8 33.9 84.3 89.4 69.6 79.4 77.3 73.4 84.6 69.4 97.7 70.2 80.3 75.5 90.4 87.6
AF2S3Net [7] LiDAR 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
DRINet++ [63] LiDAR 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2
LidarMultiNet [62] LiDAR 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6

TPVFormer [18] Camera 69.4 74.0 27.5 86.3 85.5 60.7 68.0 62.1 49.1 81.9 68.4 94.1 59.5 66.5 63.5 83.8 79.9
OccFormer [65] Camera 70.8 72.8 29.9 87.9 85.6 57.1 74.9 63.2 53.4 83.0 67.6 94.8 61.9 70.0 66.0 84.0 80.5
PanoOcc(Ours) Camera 71.4 82.5 32.3 88.1 83.7 46.1 76.5 67.6 53.6 82.9 69.5 96.0 66.3 72.3 66.3 80.5 77.3

Table 8. LiDAR semantic segmentation results on nuScenes test set. Our method achieves new state-of-the-art performance on camera-
based semantic segmentation. For a fair comparison, we use the same backbone R101-DCN and train for 24 epochs.

Hyperparameters Values
#Input features 50x50x16x256 (H,W,Z,D)
#Output features 200x200x32x64 (H’,W’,Z’,D’)

ConvTranspose3D#1 kernel:(1,5,5), stride:(1,1,1)
ConvTranspose3D#2 kernel:(1,4,4), stride:(1,2,2)
ConvTranspose3D#3 kernel:(2,4,4), stride:(2,2,2)

Activate function ReLU
Normalize BN3D

Table 9. Network hyper-parameters of voxel upsample module.

the same setting as TPVFormer [18] and OccFormer [65].
Without bells and whistles, our PanoOcc surpasses all pre-
vious camera-based methods.

C. Ablation Studies on Model Design
Initial Voxel Resolution. Table 10 compares the results
of different initial resolutions used for voxel queries in our
experiments. In experiments (b), (c), and (d), we main-
tained fixed dimensions of H and W while varying the reso-
lution of Z. Our findings clearly demonstrate that encoding
height information is a crucial factor in achieving superior
performance in both segmentation(+5.3 mIoU) and detec-
tion tasks(+1.2 mAP and +1.6 NDS), with a more signifi-
cant impact observed in segmentation tasks. Furthermore,
we observed that (a) and (b) have the same number of query
parameters and perform similarly in detection tasks. How-
ever, there is a significant gap in the segmentation tasks be-
tween these two. Specifically, the mIoU gain from (d) to

(a) is much less compared to that from (d) to (b). The ex-
periment (e) results suggest that when the dimensions of
H and W are too small, there will be a significant reduc-
tion in the performance of both detection and segmentation
tasks. Overall, our findings emphasize the importance of
encoding height information to achieve fine-grained scene
understanding.

Query Resolution mIoU mAP NDS

(a) 100x100x4 0.617 0.276 0.327
(b) 50x50x16 0.661 0.271 0.324
(c) 50x50x8 0.631 0.267 0.316
(d) 50x50x4 0.608 0.259 0.308
(e) 25x25x16 0.591 0.244 0.294

Table 10. Ablation study for different initial query resolutions.
Height information is important to achieve fine-grained 3D scene
understanding.

Design of Camera View Encoder. Table 11 presents the
ablation study conducted on the design choices in the cam-
era view encoder. Specifically, we experimented with dif-
ferent combinations of attention modules in (b), (c), and
(d). The results demonstrated that incorporating voxel self-
attention (VSA) enhanced the interaction between queries,
leading to improved performance. Considering both perfor-
mance and parameters, we choose 3 layers as default.

Design of Temporal Encoder. Table 12 presents exten-
sive ablation studies on the design of the temporal encoder,



Layers Attention module mIoU mAP NDS

(a) 1 VSA + VCA 0.648 0.251 0.294
(b) 3 VCA 0.644 0.264 0.312
(c) 3 VSA + VCA 0.653 0.267 0.314
(d) 3 VSA⇥2 + VCA 0.661 0.271 0.324
(e) 6 VSA⇥2 + VCA 0.662 0.267 0.319

Table 11. Ablation study for camera view encoder. VSA
denotes voxel self-attention, while VCA means voxel cross-
attention.

including different time intervals, number of frames, fu-
sion methods, and encoder network architectures. Com-
pared to (a) and (b) designs, both detection and segmen-
tation tasks show a significant improvement (+2.5 mIoU,
+2.4 mAP, and +7.1 NDS), which suggests the importance
of temporal information. In (b)(c)(d), we compared the in-
fluence of different time intervals and found that longer in-
tervals do not improve the fine-grained segmentation per-
formance. In (e) and (f), we also compared different ways
to fuse the historical features and found that directly con-
catenating the features performs better than using temporal
self-attention [26].

Temp. Intv. Frames Fuse Arch. mIoU mAP NDS

(a) / 1 / C3D⇥1 0.656 0.269 0.319
(b) X 0.5s 4 Cat. C3D⇥1 0.681 0.293 0.390
(c) X 1s 4 Cat. C3D⇥1 0.657 0.294 0.385
(d) X 2s 4 Cat. C3D⇥1 0.660 0.294 0.375
(e) X 1s 4 Cat. C3D⇥3 0.658 0.290 0.379
(f) X 0.5 4 TSA DA 0.648 0.271 0.323

Table 12. Ablation study for temporal encoder. Temp. stands
for temporal fusion, while Xdenotes using temporal fusion. Intv.
denotes time interval. Arch. refers to the architecture used in tem-
poral encoder. C3D represents 3D convolution. ⇥3 means using 3
blocks of the architecture. Cat. means concatenating features from
different frames, and TSA represents the temporal self-attention
structure in [26]. DA means deformable attention [69].

The Supervision for Voxel Representation. Table 13 ab-
lates the effects of different resolutions for segmentation
loss supervision. The experiment results indicate that reso-
lution at 400⇥ 400⇥ 64 has the best performance.

Loss Terms and Weights. Table 14 presents the compar-
ison of various combinations of loss terms and weights. It
indicates that the Llovasz plays a crucial role in the seg-
mentation learning process, as its removal led to a signifi-
cant drop in performance (from 65.6 to 59.6 mIoU). We also

Supervision Voxel feats Loss Resolution mIoU mAP NDS

LiDAR 200x200x32 400x400x64 0.661 0.271 0.324
LiDAR 200x200x32 200x200x32 0.644 0.267 0.316
LiDAR 100x100x16 100x100x16 0.609 0.264 0.317

Table 13. Supervision for voxel representation. We utilize
sparse LiDAR point labels as the supervision for voxel represen-
tation.

Lfocal Llovasz Lthing �1 �2 �3 mIoU mAP NDS

X 10.0 / / 0.596 0.259 0.315
X X 10.0 10.0 / 0.656 0.266 0.319

X X / 10.0 5.0 0.643 0.260 0.311

X X X 10.0 10.0 5.0 0.661 0.271 0.324
X X X 10.0 10.0 10.0 0.652 0.265 0.317
X X X 5.0 10.0 5.0 0.656 0.266 0.315
X X X 15.0 10.0 5.0 0.650 0.265 0.314
X X X 10.0 15.0 5.0 0.654 0.263 0.312

Table 14. Ablation for loss terms and weights. We ablates dif-
ferent loss combinations and its weight.

experimented with various weight combinations and found
that �1 = 10,�2 = 10,�3 = 5 performs best.

Temporal Enhancement. In Table 15, we compared the
impact of temporal information on different categories. The
findings revealed that the semantic segmentation perfor-
mance improved for almost all categories except for the bar-
rier category. The motorcycle and trailer categories demon-
strated a significant improvement, with a boost of 11.7
mIoU and 8.2 mIoU, respectively. These two categories are
typically affected by occlusion, and thus, the utilization of
temporal information can enhance the model’s ability to ac-
curately detect and segment occluded objects.

D. Training and Inference Details

Training. We trained the model on 8 NVIDIA A100
GPUs with a batch size of 1 per GPU. Throughout train-
ing, we employed the AdamW optimizer [36] for 24 epochs,
starting with an initial learning rate of 3⇥10�4 and follow-
ing a step schedule at epochs 20 and 23. Additionally, we
employed several data augmentation techniques, including
image scaling, color distortion, and Gridmask [5]. The in-
put image size is cropped to 640 ⇥ 1600. When using the
R101-DCN [10] or InternImage [53] as the backbone, we
default to the 1.0 image scale (640⇥1600). However, when
using the R50 [14] backbone, we adopt a 0.5 image scale
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65.6 72.3 35.8 91.4 84.4 47.2 52.6 57.7 31.5 55.6 80.6 94.0 64.3 63.2 66.5 77.7 73.9
68.1

(2.5")
70.7

(1.6#)
37.9

(2.1")
92.3

(0.9")
85.0

(0.6")
50.7

(3.5")
64.3

(11.7")
59.4

(1.7")
35.3

(3.8")
63.8

(8.2")
81.6

(1.0")
94.2

(0.2")
66.4

(2.1")
64.8

(1.6")
68.0

(1.5")
79.1

(1.4")
75.6

(1.7")

Table 15. Effect of temporal enhancement on different categories. The findings indicated that incorporating temporal information
improved segmentation performance for most categories.
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Figure 5. Qualitative results on nuScenes validation set. Our PanoOcc takes multi-view images as input and produces voxel predictions,
which are visualized at a resolution of 200 ⇥ 200 ⇥ 32. We evaluate 3D segmentic segmentation and panoptic segmentation on LiDAR
points.

(320 ⇥ 800). The loss weights used in our approach are
�1=10.0, �2=10.0, �3=5.0, �4=2.0,and �5=0.25.

Supervision. For the detection head, we use object-level
annotations as the supervision. We employ sparse LiDAR
point-level semantic labels for the segmentation head to su-
pervise voxel prediction. When multiple semantic labels are
present within a voxel grid, we prioritize the category label
with the highest count of LiDAR points. As for the oc-
cupancy prediction, we rely on the occupancy label as the
source of supervision.

E. Visualization
Figure 5 showcases qualitative results achieved by PanoOcc
on the nuScenes validation set. The voxel predictions are
visualized at a resolution of 200 ⇥ 200 ⇥ 32 and assign to

LiDAR points. These visualizations highlight the accuracy
and reliability of our predictions for 3D semantic segmen-
tation and panoptic segmentation.

F. Reproducibility Statements
We are committed to providing the research community
with the necessary resources to replicate our work. We
will release the training and inference codes, accompanied
by well-documented instructions to facilitate the replication
process. Our codebase is built upon mmdetection3D2, en-
suring that it is user-friendly and accessible to the wider
community. The data and annotations of nuScenes3 are pub-
licly available.

2https://github.com/open-mmlab/mmdetection3d
3https://nuscenes.org

https://github.com/open-mmlab/mmdetection3d
https://nuscenes.org
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