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Supplementary Material

This document provides supplementary information that
is not included in our main paper due to space limitation:
Section A further explains the visibility distance in our
method. Section B describes the details of our experiments.
Section C presents some supplementary experimental re-
sults.

A. Additional Explanation of Visibility Dis-
tance

The visibility distance is between real and predicted visi-
bility in complex values, reflecting the amplitude and phase
information of visibility data.

In radio interferometry imaging process, amplitude rep-
resents the intensity or energy of a signal, and corresponds
to the strength with which an image responds to the 2D si-
nusoidal wave at a specific frequency [5]. Phase encodes the
positional information of signal components [6], helping re-
construct the spatial relationships and structures within the
image data.
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which is the same as the amplitude of Vr(u, v). Similarly,
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plitude of Vp(u, v). The phase of a complex number A+iB
is the angle between the vector and the real axis in the
complex plane, typically measured in radians or degrees.
This angle can be calculated using the arctangent function:
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corresponds to the phase of Vp(u, v).

The magnitude of the vectors |p⃗r| and |p⃗p| represent the
amplitudes of the complex visibility values, reflecting the
strength or intensity of the signal components in the spa-
tial frequency domain. The angles θr and θp of the vectors
correspond to the phases of the complex visibility values,
indicating the positional information and structural arrange-
ment of the image components. As a result, the single point
visibility distance defined by d(p⃗r, p⃗p) covers information
from both amplitude and phase.

B. Additional Experiment Details

B.1. Implementation Details of PolarRec

We provide our demo code in the supplementary material.
All the code we used for the experiments will be public
if the paper is published. In our implementation of Polar-
Rec, we use a 2-layer MLP with a Leaky ReLU activation
in the intra-group encoder, followed by an adaptive aver-
age pooling layer. The inter-group encoding is done by a
Transformer encoder. We then use an 8-layer MLP in the
conditioned neural field, and only the first 8 output tokens
with the dimension of 1024 from the Transformer encoder
are used to condition this 8-layer MLP. We show the details
of the FiLM conditioning network and PorlarRec encoder
in our model in table 1 and table 2.

Our model is trained with Adam with lr = 0.0001, β1 =
0.9, β2 = −0.999, eps = 1× 10−8,weight decay = 0. The
two scaling factors α and β in the Radial Visibility Loss are
both set to 1. The model for overall comparison is trained
with batch size = 32 and group size = 32.

B.2. Baseline Details

B.2.1 CLEAN

CLEAN [4] facilitates the extraction of the original image,
denoted as I(l,m), from the observed visibilities V (u, v)
and the telescope array configuration W (u, v). This pro-
cess can be mathematically expressed as a Fourier inver-
sion of the product of V (u, v) and W (u, v), leading to the
equation F−1[V (u, v)W (u, v)] = I(l,m)∗F−1[W (u, v)].
The specific arrangement of the telescope array, W (u, v),
yields a point-spread function (PSF) in the image plane,
known as the dirty beam, represented by F−1[W (u, v)].
The initial image created directly from the complex visi-
bilities, often referred to as the dirty image, is the convolu-
tion of the dirty beam with the true celestial image I(l,m)
[9]. The process of deconvolution in the CLEAN algo-
rithm involves an iterative technique where the peak emis-
sion in the dirty image, once convolved with the dirty beam,
is systematically subtracted. Throughout this iterative pro-
cess, a model of the clean emission is progressively con-
structed. In the implementation, we set the threshold to
stop iteration to 1 × 10−11, gain = 0.1, beam size = 4,
maxIteration = 1× 105 for the best performance.



Component Details
Positional Embedding PE Module: Fourier Encoding

Layers (FiLMLinear x7)

Linear: in features=258 (for the first layer), 256 (for subsequent layers),
out features=256, bias=True (first layer only)
Activation1: LeakyReLU (negative slope=0.01)
Activation2: LeakyReLU (negative slope=0.01)
Film1: Linear, in features=1024, out features=256, bias=True
Film2: Linear, in features=1024, out features=256, bias=True

Activations ModuleList containing 7 ReLU activations

Final Layer (FiLMLinear)

Linear: in features=256, out features=2, bias=True
Activation1: LeakyReLU (negative slope=0.01)
Activation2: LeakyReLU (negative slope=0.01)
Film1: Linear, in features=1024, out features=2, bias=True
Film2: Linear, in features=1024, out features=2, bias=True

Table 1. FiLM Conditioning Component Structure

Component Details
Linear Embedding for Visibility Values Sequential (Linear: in features=2, out features=254, bias=True)

Intra-group Encoding

Sequential (Linear: in features=512, out features=256, bias=True,
LeakyReLU: negative slope=0.01,
Linear: in features=256, out features=512, bias=True)
AdaptiveAvgPool2d, output size=(1660 // group size, 512)
Dropout, p=0.0

Inter-group Encoding

Transformer with 4 sets of module lists, each containing:
- Residual with PreNorm and Attention (to qkv Linear: in features=512,
out features=1536, bias=False, to out Sequential: Linear in features=512,
out features=512, bias=True)
- Residual with PreNorm and FeedForward (Sequential: Linear in features=512,
out features=512, bias=True)

Output Token Heads
Module list containing 8 Sequential modules, each with:
- LayerNorm: (512,), eps=1e-05, elementwise affine=True
- Linear: in features=512, out features=1024, bias=True

Table 2. PolarRec Encoder Component Structure

B.2.2 U-Net

In the implementation of U-Net, we follow the source code
of U-Net with attention and residual blocks for MRI recon-
struction [10]. The image size is set to 256 and the number
of residual blocks is 2. The attention resolution is set to 20
and the number of heads is set as 4 for the best performance.

B.2.3 Radionets

We follow the original source code for Radionets [7]
implementation. We choose arch name = ’SRResNet’ as
the backbone network for the best performance and set
amp phase = false to output the real and imaginary value
of visibility data for comparison.

B.2.4 Neural Interferometry

We use the original code of Neural Interferometry [9]. The
batch size is set to 4 due to the GPU memory capacity limit
and the loss type is set as ’spectral’ for the best performance.
All other settings are the same as the default values in the
original code.

Table 3. Dataset Information.

Dataset Total Size Test Set Size
MG 1853 370
IRSG 2027 405
UTSG 1829 365
EGB 1873 374



Table 4. Overall performance comparison on Galaxy10 Dataset [3].

Models
Domain Metrics

Img Vis LFD↓ PSNR↑ SSIM↑

Dirty N/A 10.204 ± 1.079 0.6583 ± 0.0543
CLEAN [4] ✓ N/A 17.535 ± 2.195 0.8023 ± 0.0304
U-Net [10] ✓ 1.465 ± 0.318 16.175 ± 1.952 0.7814 ± 0.0323

Radionets [7] ✓ 1.173 ± 0.262 19.575 ± 2.350 0.8305 ± 0.0300
Neural Interferometry [9] ✓ 0.962 ± 0.320 22.956 ± 2.617 0.8785 ± 0.0302

PolarRec ✓ 0.658 ± 0.243 26.225 ± 2.751 0.9002 ± 0.0268

B.3. Dataset Details

We evaluated the methods on 4 datasets, Merging Galax-
ies (MG), In-between Round Smooth Galaxies (IRSG), Un-
barred Tight Spiral Galaxies (UTSG), and Edge-on Galax-
ies with Bulge (EGB). For each dataset, we randomly split
20% of all images for testing, with the remainder being used
for training. The details of the datasets are shown in Table
3. Each observation of an image has 1660 sampled visibility
points and all the images in our experiments are converted
to grayscales for sky intensity information and then scaled
to a size of 256 × 256. Following the methods of Wu et
al. [9], we apply the inversed discrete Fourier transform
(IDFT) technique to create dirty images out of the visibility
data.

C. Additional Experiments
We also evaluate the models on Galaxy10 dataset [3] which
contains 10 kinds of distinct galaxy morphologies. This
dataset comprises 17,736 galaxy images, sourced from the
DESI Legacy Imaging Surveys [2]. This in turn, merges
data from the Beijing-Arizona Sky Survey (BASS) [11], the
DECam Legacy Survey (DECaLS) [1], and the Mayall z-
band Legacy Survey [8]. The data synthesis process on this
dataset is the same as other four datasets in our paper. We
then randomly split 5000 images for testing, with the re-
mainder being used for training. The overall performance
comparison results are shown in Table 4.
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