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7. Additional Experiments
In Sec. 7.1, we supplement the main experiments on CI-

FAR100 [24]. Sec. 7.2 provides a detailed demonstration
of the experiments regarding attack magnitude mentioned
in the main manuscript. Furthermore, Sec. 7.3 and Sec. 7.4
are devoted to detailed ablation studies.

7.1. Experiments on CIFAR100
We also fine-tune the model on CIFAR100 [24] and eval-

uate it on all 16 datasets. Similarly, the evaluation except on
the CIFAR-100 dataset is conducted in a zero-shot manner.
During training and evaluation, we use the PGD-10 [30] at-
tack with a perturbation bound ε = 1/255. The robust ac-
curacy results are shown in Tab. 6, and the clean accuracy
results are displayed in Tab. 7. We bold the best robust
accuracy results for each dataset.

From Tab. 6, we can see that our method shows an av-
erage improvement in robust accuracy of 8.31% compared
with the original CLIP model. Compared with FT-TeCoA
[32], the current state-of-the-art, our method shows an aver-
age improvement in robust accuracy of 4.71%, and achieves
improvement on the most of datasets except CIFAR100.
However, the decrease observed on CIFAR-100 to some
extent indicates that our method effectively mitigates the
phenomenon of overfitting. Moreover, Tab. 7 demonstrates
that the improvement in robust accuracy brought by the FT-
TeCoA comes at the cost of a 4.03% decrease in average
clean accuracy compared with the original CLIP. However,
our method still outperforms FT-TeCoA in terms of clean
accuracy, achieving a clean accuracy of 56.68%. For vi-
sual prompt, since it involves fewer parameters update than
fine-tuning, both robust accuracy and clean accuracy are re-
duced across different methods. Nevertheless, our method
consistently outperforms FT-TeCoA, further proving the ef-
fectiveness of our approach.

It is noteworthy that models fine-tuned on CIFAR100,
as compared with those fine-tuned on TinyImageNet [12],
exhibit a decline in average robust accuracy for both our
model and the model fine-tuned using FT-TeCoA. This also
indicates that overfitting is more likely to occur on smaller-
scale datasets. Similar to the situation on TinyImageNet,
our method results in an increase in computational cost,
with each training epoch taking 124 seconds longer than
FT-TeCoA. However, PMG-AFT achieves much better re-
sults in both average robust accuracy and clean accuracy
than FT-TeCoA.

7.2. Detailed Results on Different Attack Strength
We specifically present the experimental results on all

datasets under different attack perturbation bounds. Con-

sistent with the experimental setup in the main manuscript,
we use the FT-TeCoA [32] method and our PMG-AFT
method on TinyImageNet to fine-tune models under per-
turbation bounds of ε = 1/255, 2/255 and 4/255, respec-
tively. These models are tested under attacks of the same
attack magnitude with training phrase.

From Tab. 8 and 9, it can be observed that with increas-
ing perturbation, the robust accuracy of both methods de-
creases to varying degrees on each dataset. However, the
degree of decrease is smaller for our method. Under dif-
ferent attack magnitudes, our method consistently achieves
higher robust accuracy than FT-TeCoA [32] on the majority
of datasets, with average robust accuracies surpassing FT-
TeCoA by 4.99%, 4.70%, and 4.86% under perturbations of
1/255, 2/255 and 4/255, respectively. Besides, as the size
of adversarial perturbation continues to increase, the clean
accuracy is almost unaffected, and our method consistently
maintains performance superior to that of FT-TeCoA.

7.3. Ablation Study on Loss Function
We provide a detailed demonstration of the contribution

of each loss function term across each dataset. As shown
in Tab. 10, with the incorporation of our proposed Lgeneral

loss (i.e., PMG-AFT (α = 1, β = 0)), our method surpasses
FT-TeCoA [32] in robust accuracy on most datasets. How-
ever, there is a noticeable decline in the robust accuracy of
our method on TinyImageNet [12]. With the introduction
of another regularization loss, namely Lclean, the model’s
adversarial robust generalization is further enhanced, under-
scoring the significant potential of our approach. For clean
accuracy, as shown in Tab. 11, with the incorporation of our
proposed loss, there is an obvious improvement compared
with FT-TeCoA. The addition of Lgeneral alone achieves
the best average accuracy on clean samples, and the results
are optimal on most datasets. This further confirms that our
method effectively mitigates the phenomenon of overfitting.

We also adjust the coefficients preceding the two loss
terms and find that with varying values of α and β, the ro-
bust and clean accuracies fluctuate within a certain range,
yet consistently exhibit superior performance compared
to FT-TeCoA. Ultimately, we discover that our method
achieves the best average robust accuracy when α = 1 and
β = 1, and compared to other methods, it also attains the
most optimal balance between robust and clean accuracies.

7.4. Ablation Study on Feature Layer and Distance
Metric

In Tab. 12 and Tab. 13, we present in detail the ro-
bust and clean accuracies when applying KL divergence,



Table 6. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on CIFAR100 [24] and evaluate six
methods (rows) on 16 datasets (columns), presenting the accuracy for each dataset as well as the average accuracy, with the best results
shown in bold. Here, CLIP represents the pre-trained CLIP model, while FT-standard refers to the model fine-tuned on clean datasets.
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CLIP 45.70 19.53 68.35 9.62 3.12 9.76 3.51 21.87 3.64 0.39 0.39 6.44 15.62 23.11 2.73 50.27 17.75 0
FT-Standard 27.34 15.43 57.03 10.01 3.20 5.85 4.10 17.18 0.65 0.00 0.00 6.83 16.60 22.46 2.53 35.65 14.05 101
FT-TeCoA [32] 58.20 39.25 66.40 13.79 4.60 11.71 9.76 21.09 11.13 0.39 1.17 8.90 18.94 29.10 5.26 41.96 21.35 253
PMG-AFT (ours) 64.06 36.33 70.12 17.93 7.50 22.66 10.55 30.86 22.92 1.17 2.73 10.51 21.09 34.83 5.46 58.37 26.06 377
VP-TeCoA [32] 54.68 37.89 47.26 6.15 1.95 5.46 10.15 1.56 0.21 0.00 2.14 3.82 13.27 15.43 0.97 52.12 15.81 350
VPT-PMG-AFT (ours) 61.52 41.01 53.90 8.24 3.51 7.81 10.41 2.34 0.85 1.17 2.53 5.35 13.47 28.90 3.32 55.16 18.71 670

Table 7. Zero-shot clean accuracies. We fine-tune the model on CIFAR100 [24] and evaluate six methods (rows) on 16 datasets (columns),
presenting the accuracy for each dataset as well as the average accuracy. After fine-tuning or adversarial fine-tuning on CIFAR100 [24],
the zero-shot accuracy of the CLIP model on clean images generally decreases.
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CLIP 88.28 63.47 97.65 55.06 76.79 85.93 48.43 43.75 45.31 8.20 59.18 62.65 32.22 86.13 54.10 52.67 59.98 0
FT-Standard 91.21 77.73 97.46 55.02 68.82 84.37 38.86 43.75 37.82 13.28 49.21 54.49 28.71 78.12 49.41 46.15 57.15 101
FT-TeCoA [32] 85.93 69.53 95.31 55.04 69.60 85.54 37.89 42.57 32.16 8.59 50.78 56.60 28.12 80.99 51.56 45.14 55.95 253
PMG-AFT (ours) 80.86 60.15 95.31 57.12 72.81 83.20 41.40 42.58 31.32 8.20 46.48 60.15 30.85 84.04 54.49 58.03 56.68 377
VPT-TeCoA [32] 78.71 57.03 83.91 30.92 24.76 37.89 11.97 21.09 12.57 1.56 38.08 25.00 26.36 48.11 11.52 56.30 35.36 350
VPT-PMG-AFT (ours) 83.59 61.13 85.54 38.55 39.53 49.60 16.66 33.59 13.13 14.06 40.23 33.51 24.60 61.65 23.63 59.73 42.42 670

L2 distance, and cosine distance to the output layer and the
penultimate feature layer across various datasets. Since the
output layer represents a probability distribution, KL di-
vergence distance can be directly applied, but this is not
suitable for the feature layer. Moreover, cosine distance is
generally not a common measure for probability vectors.
Therefore, for the output layer, we only use KL distance
and L2 distance, while for the feature layer, we only employ
L2 distance and cosine distance. The experimental results
demonstrate that using KL divergence distance at the output
layer achieves the best robust and clean accuracies, thereby
proving the superiority of this choice.

We also observe that using the same L2 distance, ap-
plying our loss function at the output layer results in better
robust and clean accuracies than at the feature layer. Thus,
the closer to the output layer, the more improvements are
made from our method. Additionally, employing cosine
distance measurement at the feature layer is a more suitable
approach.

Lastly, starting from the loss function, we simply de-
rive the advantages of using KL distance measurement for
Lgeneral at the output layer. As shown in Equ, (11), H(·)
represents entropy, H(·, ·) denotes cross-entropy, I(·, ·) de-
notes mutual information, N is the size of a batch, c is the
number of categories, Y represents the one-hot ground truth
label, with a size of N × c. Pi represents the i-th sample
in a batch, and j represents the j-th element in the output
probability tensor P . For example, In (11), Padvij means
The j-th element of the output distribution obtained by in-
putting the i-th adversarial example from a batch into the
target model, Poriij means The j-th element of the output

distribution obtained by inputting the i-th adversarial ex-
ample from a batch into the pre-trained model.

We expand the formula in the loss function and sim-
plify it using the knowledge of information theory. Since
the pre-trained model Fori(·) is a fixed function, H (Pori)
can be regarded as a constant. Therefore, minimizing the
loss function is equivalent to minimizing the cross entropy
between adversarial examples and labels while maximizing
the mutual information between the target model and the
pre-trained model simultaneously, where the former is used
to ensure robustness and the latter is used to ensure gener-
alization transformation. With the increase in mutual infor-
mation between the target model and the pre-trained model,
the target model is more likely to learn the generalized fea-
tures of the pre-trained model.

Lrobust + Lgeneral

= −
1

N

N∑
i=1

c∑
j=1

Yij log
(
Padvij

)
+

1

N

N∑
i=1

DKL

(
Padvi∥Porii

)

= −
1

N

N∑
i=1

c∑
j=1

Yij log
(
Padvij

)
+

1

N

N∑
i=1

c∑
j=1

Padvij log

(
Padvij

Poriij

)

=
1

N

N∑
i=1

c∑
j=1

[Padvij log
(
Padvij

)
− Padvij log

(
Poriij

)
− Yij log

(
Padvij

)
]

= −H (Padv) +H(Padv , Pori) +H (Y, Padv)

= −H (Padv) +H (Padv) +H (Pori)− I(Padv , Pori) +H (Y, Padv)

= H (Pori)− I(Padv , Pori) +H (Y, Padv)

(11)



Table 8. Adversarial zero-shot robust accuracies under PGD-10 [30] attack with different perturbation bounds (ε = 1/255, 2/255 and
4/255). We fine-tune the model on TinyImageNet [12] and evaluate on 16 datasets (columns), presenting the accuracy for each dataset as
well as the average accuracy, with the best results shown in bold. We employ the same perturbation bound for both training and testing.
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FT-TeCoA-1/255 [32] 40.82 24.41 70.70 19.21 14.45 28.13 23.05 28.13 12.57 3.13 19.33 16.48 24.02 40.56 12.69 53.68 26.96
PMG-AFT-1/255(ours) 66.99 38.28 76.17 24.23 14.92 33.59 23.43 34.38 24.15 3.91 14.84 17.26 24.02 45.05 14.64 57.64 31.95
FT-TeCoA-2/255 [32] 32.21 11.71 52.73 10.63 2.73 7.42 14.06 24.21 16.08 0.39 5.85 7.85 17.57 21.68 1.56 53.55 17.51
PMG-AFT-2/255(ours) 63.28 26.56 66.79 13.83 3.18 7.64 7.81 30.07 21.15 0.00 4.49 8.07 18.16 27.66 1.95 54.79 22.21
FT-TeCoA-4/255 [32] 29.29 9.18 46.28 4.63 0.39 0.00 0.78 21.48 12.95 0.00 1.75 1.36 13.67 11.78 0.00 53.51 12.94
PMG-AFT-4/255(ours) 63.28 21.87 59.96 7.17 0.42 0.39 0.58 26.56 20.11 0.00 1.95 1.36 15.03 12.63 0.00 53.57 17.80

Table 9. Zero-shot clean accuracies. We fine-tune the model on TinyImageNet [12] with PGD-10 [30] of different perturbation bounds
(ε = 1/255, 2/255 and 4/255) and evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the average
accuracy, with the best average result shown in bold.

Method C
IF

A
R

10
(%

)

C
IF

A
R

10
0

(%
)

ST
L

10
(%

)

SU
N

39
7

(%
)

Fo
od

10
1

(%
)

O
xf

or
dp

et
(%

)

Fl
ow

er
s1

02
(%

)

D
T

D
(%

)

E
ur

oS
A

T
(%

)

Fg
vc

A
ir

cr
af

t(
%

)

Ti
ny

Im
ag

eN
et

(%
)

Im
ag

eN
et

(%
)

C
al

te
ch

10
1

(%
)

C
al

te
ch

25
6

(%
)

St
an

fo
rd

C
ar

s
(%

)

PC
A

M
(%

)

Average (%)

FT-TeCoA-1/255 [32] 66.79 41.01 89.25 47.01 52.81 70.31 36.13 35.94 18.88 7.81 48.83 43.67 28.32 72.98 37.89 37.89 46.99
PMG-AFT-1/255(ours) 83.98 58.39 92.97 56.41 66.40 84.76 42.96 41.02 35.28 6.25 46.87 56.75 30.46 82.94 48.24 48.24 55.71
FT-TeCoA-2/255 [32] 62.30 36.52 87.30 50.79 53.28 71.48 39.06 35.93 20.37 5.85 44.53 46.21 28.12 72.39 41.40 54.35 46.86
PMG-AFT-2/255(ours) 78.12 54.29 91.01 56.94 65.15 85.54 41.01 37.89 31.96 4.29 35.15 54.60 29.49 79.29 46.09 54.68 52.84
FT-TeCoA-4/255 [32] 62.50 38.86 89.45 57.33 63.59 80.46 42.96 37.50 29.36 3.51 40.82 53.94 28.12 76.95 42.07 49.88 49.83
PMG-AFT-4/255(ours) 77.34 49.41 91.60 56.26 65.85 87.10 40.43 34.76 40.88 4.29 29.10 54.96 28.90 77.66 46.28 50.67 52.21

Table 10. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on TinyImageNet [12] by FT-TeCoA
and our method with different loss function term coefficients and combinations. We evaluate on 16 datasets (columns), presenting the
accuracy for each dataset as well as the average accuracy, with the best average result shown in bold. α and β represent two hyper-
parameters in the loss function L = Lrobust + αLgeneral + βLclean.
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FT-TeCoA [32] (α = 0, β = 0) 40.82 24.41 70.70 19.21 14.45 28.13 23.05 28.13 12.57 3.13 19.33 16.48 24.02 40.56 12.69 53.68 26.96
PMG-AFT (α = 1, β = 0) (ours) 55.46 29.29 73.24 21.48 10.70 27.73 18.55 31.64 25.58 0.78 6.64 14.37 17.38 48.69 14.84 58.89 28.44
PMG-AFT (α = 1, β = 1) (ours) 66.99 38.28 76.17 24.23 14.92 33.59 23.43 34.38 24.15 1.56 14.84 17.26 24.21 45.05 14.64 57.64 31.95
PMG-AFT (α = 2, β = 1) (ours) 69.72 34.76 74.02 21.57 10.07 29.29 17.96 33.20 30.79 0.78 6.25 14.06 22.07 39.51 11.13 56.02 29.45
PMG-AFT (α = 1, β = 2) (ours) 65.43 38.67 77.93 25.03 15.31 36.32 24.21 35.93 23.50 0.78 16.99 17.69 24.21 46.74 14.25 57.36 31.52
PMG-AFT (α = 0.5, β = 1) (ours) 58.00 34.76 75.00 24.41 16.01 34.76 24.80 33.20 19.85 0.39 18.75 18.12 23.43 46.68 15.82 56.64 31.28
PMG-AFT (α = 1, β = 0.5) (ours) 64.84 36.91 75.58 23.29 13.67 30.85 22.65 33.98 24.87 1.17 11.13 16.32 22.46 44.66 13.67 57.81 30.86

Table 11. Zero-shot clean accuracies. We fine-tune the model on TinyImageNet [12] by FT-TeCoA and our method with different loss
function term coefficients and combinations. We evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the
average accuracy. α and β represent two hyper-parameters in the loss function L = Lrobust + αLgeneral + βLclean.
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FT-TeCoA [32] (α = 0, β = 0) 66.79 41.01 89.25 47.01 52.81 70.31 36.13 35.94 18.88 7.81 48.83 43.67 28.32 72.98 37.89 54.29 46.99
PMG-AFT (α = 1, β = 0) (ours) 86.52 65.43 95.89 57.81 71.95 83.20 44.14 42.18 46.41 9.37 61.13 60.62 24.21 80.07 43.94 59.61 58.28
PMG-AFT (α = 1, β = 1) (ours) 83.98 58.39 92.97 56.41 66.40 84.76 42.96 41.02 35.28 6.25 46.87 56.75 30.46 82.94 48.24 57.81 55.71
PMG-AFT (α = 2, β = 1) (ours) 87.30 59.76 94.33 57.58 71.09 84.37 43.75 40.62 51.56 7.42 35.54 58.94 31.44 83.46 51.95 56.19 57.20
PMG-AFT (α = 1, β = 2) (ours) 80.66 53.51 91.99 55.36 64.92 83.98 41.79 39.84 31.77 5.46 47.26 55.46 29.88 81.51 46.48 57.31 54.19
PMG-AFT (α = 0.5, β = 1) (ours) 77.93 51.56 91.40 53.92 63.51 82.81 42.18 38.67 28.97 6.25 50.39 54.10 29.29 80.40 45.89 56.75 53.37
PMG-AFT (α = 1, β = 0.5) (ours) 84.96 60.93 94.14 57.12 67.26 85.54 43.75 41.01 39.58 5.85 47.46 57.77 30.27 83.65 49.80 58.48 56.72



Table 12. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on TinyImageNet [12] by our method
under the selection of different feature layers and distance metric. We evaluate on 16 datasets (columns), presenting the accuracy for each
dataset as well as the average accuracy, with the best results shown in bold.
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Output + KL 66.99 38.28 76.17 24.23 14.92 33.59 23.43 34.38 24.15 3.91 14.84 17.26 24.02 45.05 14.64 57.64 31.95
Output + L2 41.21 24.41 70.50 20.61 14.45 31.25 22.85 28.90 14.38 0.78 19.53 17.46 24.21 41.60 11.91 51.67 27.23
Feature + L2 40.62 21.09 70.50 11.61 11.71 20.70 8.33 8.59 10.44 0.39 28.12 14.33 17.96 37.95 9.57 54.50 22.90
Feature + COS 53.32 28.12 67.77 13.33 10.23 29.68 14.58 12.50 10.01 1.17 10.15 14.14 16.40 43.88 13.47 53.84 24.53

Table 13. Zero-shot clean accuracies. We fine-tune the model on TinyImageNet [12] by our method under the selection of different feature
layers and distance metric. We evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the average accuracy,
with the best average result shown in bold.
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Output + KL 83.98 58.39 92.97 56.41 66.40 84.76 42.96 41.02 35.28 6.25 46.87 56.75 30.46 82.94 48.24 48.24 55.71
Output + L2 68.55 43.55 89.45 50.33 54.06 74.21 36.32 36.71 21.68 7.81 49.02 46.32 28.51 73.11 39.84 51.95 48.21
Feature + L2 59.18 31.83 86.52 33.73 31.40 42.18 21.09 17.96 15.90 17.57 56.05 33.59 25.19 59.44 22.26 59.31 38.32
Feature + COS 80.66 48.63 93.55 55.52 67.10 68.35 39.58 35.93 36.29 16.79 42.38 54.18 24.41 81.90 49.21 53.24 52.98
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