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Supplementary Material

7. Additional Experiments

In Sec. 7.1, we supplement the main experiments on CI-
FAR100 [24]. Sec. 7.2 provides a detailed demonstration
of the experiments regarding attack magnitude mentioned
in the main manuscript. Furthermore, Sec. 7.3 and Sec. 7.4
are devoted to detailed ablation studies.

7.1. Experiments on CIFAR100

We also fine-tune the model on CIFAR100 [24] and eval-
uate it on all 16 datasets. Similarly, the evaluation except on
the CIFAR-100 dataset is conducted in a zero-shot manner.
During training and evaluation, we use the PGD-10 [30] at-
tack with a perturbation bound £ = 1/255. The robust ac-
curacy results are shown in Tab. 6, and the clean accuracy
results are displayed in Tab. 7. We bold the best robust
accuracy results for each dataset.

From Tab. 6, we can see that our method shows an av-
erage improvement in robust accuracy of 8.31% compared
with the original CLIP model. Compared with FT-TeCoA
[32], the current state-of-the-art, our method shows an aver-
age improvement in robust accuracy of 4.71%, and achieves
improvement on the most of datasets except CIFAR100.
However, the decrease observed on CIFAR-100 to some
extent indicates that our method effectively mitigates the
phenomenon of overfitting. Moreover, Tab. 7 demonstrates
that the improvement in robust accuracy brought by the FT-
TeCoA comes at the cost of a 4.03% decrease in average
clean accuracy compared with the original CLIP. However,
our method still outperforms FT-TeCoA in terms of clean
accuracy, achieving a clean accuracy of 56.68%. For vi-
sual prompt, since it involves fewer parameters update than
fine-tuning, both robust accuracy and clean accuracy are re-
duced across different methods. Nevertheless, our method
consistently outperforms FT-TeCoA, further proving the ef-
fectiveness of our approach.

It is noteworthy that models fine-tuned on CIFAR100,
as compared with those fine-tuned on TinyImageNet [12],
exhibit a decline in average robust accuracy for both our
model and the model fine-tuned using FT-TeCoA. This also
indicates that overfitting is more likely to occur on smaller-
scale datasets. Similar to the situation on TinylmageNet,
our method results in an increase in computational cost,
with each training epoch taking 124 seconds longer than
FT-TeCoA. However, PMG-AFT achieves much better re-
sults in both average robust accuracy and clean accuracy
than FT-TeCoA.

7.2. Detailed Results on Different Attack Strength

We specifically present the experimental results on all
datasets under different attack perturbation bounds. Con-

sistent with the experimental setup in the main manuscript,
we use the FT-TeCoA [32] method and our PMG-AFT
method on TinyIlmageNet to fine-tune models under per-
turbation bounds of ¢ = 1/255,2/255 and 4/255, respec-
tively. These models are tested under attacks of the same
attack magnitude with training phrase.

From Tab. 8 and 9, it can be observed that with increas-
ing perturbation, the robust accuracy of both methods de-
creases to varying degrees on each dataset. However, the
degree of decrease is smaller for our method. Under dif-
ferent attack magnitudes, our method consistently achieves
higher robust accuracy than FT-TeCoA [32] on the majority
of datasets, with average robust accuracies surpassing FT-
TeCoA by 4.99%, 4.70%, and 4.86% under perturbations of
1/255,2/255 and 4/255, respectively. Besides, as the size
of adversarial perturbation continues to increase, the clean
accuracy is almost unaffected, and our method consistently
maintains performance superior to that of FI-TeCoA.

7.3. Ablation Study on Loss Function

We provide a detailed demonstration of the contribution
of each loss function term across each dataset. As shown
in Tab. 10, with the incorporation of our proposed L general
loss (i.e., PMG-AFT (o = 1, 8 = 0)), our method surpasses
FT-TeCoA [32] in robust accuracy on most datasets. How-
ever, there is a noticeable decline in the robust accuracy of
our method on TinylmageNet [12]. With the introduction
of another regularization loss, namely L ¢4, the model’s
adversarial robust generalization is further enhanced, under-
scoring the significant potential of our approach. For clean
accuracy, as shown in Tab. 11, with the incorporation of our
proposed loss, there is an obvious improvement compared
with FT-TeCoA. The addition of Lgeperqr alone achieves
the best average accuracy on clean samples, and the results
are optimal on most datasets. This further confirms that our
method effectively mitigates the phenomenon of overfitting.

We also adjust the coefficients preceding the two loss
terms and find that with varying values of « and 3, the ro-
bust and clean accuracies fluctuate within a certain range,
yet consistently exhibit superior performance compared
to FT-TeCoA. Ultimately, we discover that our method
achieves the best average robust accuracy when o« = 1 and
B = 1, and compared to other methods, it also attains the
most optimal balance between robust and clean accuracies.

7.4. Ablation Study on Feature Layer and Distance
Metric

In Tab. 12 and Tab. 13, we present in detail the ro-

bust and clean accuracies when applying KL divergence,



Table 6. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on CIFAR100 [24] and evaluate six
methods (rows) on 16 datasets (columns), presenting the accuracy for each dataset as well as the average accuracy, with the best results
shown in bold. Here, CLIP represents the pre-trained CLIP model, while FT-standard refers to the model fine-tuned on clean datasets.
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Method 5] 5} % @ £ 3 = a 3 & £ E 5 5 H g Average (%)  Time (s)
CLIP 4570 1953 6835 9.62 3.12 9.76 351 2187 364 039 039 644 1562 23.11 273 5027 17.75 0
FT-Standard 27.34 1543 57.03 10.01 320 5.85 410 17.18 0.65 0.00 000 6.83 16.60 2246 2.53 3565 14.05 101
FT-TeCoA [32] 5820 39.25 6640 1379 460 11.71 9.76 21.09 11.13 039 1.17 890 1894 29.10 526 4196 21.35 253
PMG-AFT (ours) 64.06 36.33 70.12 1793 7.50 22.66 10.55 30.86 2292 1.17 2.73 10.51 21.09 3483 546 58.37 26.06 377
VP-TeCoA [32] 54.68 37.89 4726 6.15 195 546 10.15 1.56 021 0.00 2.14 3.82 1327 1543 097 5212 15.81 350
VPT-PMG-AFT (ours) 61.52 41.01 5390 824 351 7.81 1041 234 085 117 253 535 1347 2890 332 5516 18.71 670

Table 7. Zero-shot clean accuracies. We fine-tune the model on CIFAR100 [24] and evaluate six methods (rows) on 16 datasets (columns),
presenting the accuracy for each dataset as well as the average accuracy. After fine-tuning or adversarial fine-tuning on CIFAR100 [24],
the zero-shot accuracy of the CLIP model on clean images generally decreases.
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CLIP 88.28 6347 97.65 5506 7679 8593 4843 4375 4531 820 5918 62.65 32.22 86.13 5410 5267  59.98 0
FT-Standard 9121 7773 9746 5502 6882 8437 3886 4375 37.82 1328 4921 5449 2871 78.12 4941 4615 5715 101
FT-TeCoA [32] 8593 6953 9531 5504 69.60 8554 37.89 4257 3216 859 5078 5660 28.12 8099 5156 4514 5595 253
PMG-AFT (ours) 80.86  60.15 9531 57.12 72.81 8320 4140 4258 3132 820 4648 60.15 30.85 84.04 5449 58.03  56.68 377
VPT-TeCoA [32] 7871 5703 8391 3092 2476 37.89 1197 21.09 1257 156 3808 2500 2636 4811 1152 5630 3536 350
VPT-PMG-AFT (ours) 8359 61.13 85.54 3855 39.53 49.60 1666 3359 13.13 1406 4023 3351 2460 6165 23.63 5973 4242 670

L, distance, and cosine distance to the output layer and the
penultimate feature layer across various datasets. Since the
output layer represents a probability distribution, KL di-
vergence distance can be directly applied, but this is not
suitable for the feature layer. Moreover, cosine distance is
generally not a common measure for probability vectors.
Therefore, for the output layer, we only use KL distance
and Lo distance, while for the feature layer, we only employ
Lo distance and cosine distance. The experimental results
demonstrate that using KL divergence distance at the output
layer achieves the best robust and clean accuracies, thereby
proving the superiority of this choice.

We also observe that using the same Lo distance, ap-
plying our loss function at the output layer results in better
robust and clean accuracies than at the feature layer. Thus,
the closer to the output layer, the more improvements are
made from our method. Additionally, employing cosine
distance measurement at the feature layer is a more suitable
approach.

Lastly, starting from the loss function, we simply de-
rive the advantages of using KL distance measurement for
Lgenerar at the output layer. As shown in Equ, (11), H(-)
represents entropy, H (-, -) denotes cross-entropy, I(-, -) de-
notes mutual information, N is the size of a batch, ¢ is the
number of categories, Y represents the one-hot ground truth
label, with a size of N x c. P; represents the i-th sample
in a batch, and j represents the j-th element in the output
probability tensor P. For example, In (11), Pygy,; means
The j-th element of the output distribution obtained by in-
putting the i-th adversarial example from a batch into the
target model, P,.;,; means The j-th element of the output

distribution obtained by inputting the i-th adversarial ex-
ample from a batch into the pre-trained model.

We expand the formula in the loss function and sim-
plify it using the knowledge of information theory. Since
the pre-trained model F,,.;(+) is a fixed function, H (P,,;)
can be regarded as a constant. Therefore, minimizing the
loss function is equivalent to minimizing the cross entropy
between adversarial examples and labels while maximizing
the mutual information between the target model and the
pre-trained model simultaneously, where the former is used
to ensure robustness and the latter is used to ensure gener-
alization transformation. With the increase in mutual infor-
mation between the target model and the pre-trained model,
the target model is more likely to learn the generalized fea-
tures of the pre-trained model.
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Table 8. Adversarial zero-shot robust accuracies under PGD-10 [30] attack with different perturbation bounds (¢ = 1/255,2/255 and
4/255). We fine-tune the model on TinyImageNet [12] and evaluate on 16 datasets (columns), presenting the accuracy for each dataset as
well as the average accuracy, with the best results shown in bold. We employ the same perturbation bound for both training and testing.

CIFAR10 (%)
CIFAR100 (%)
STLI10 (%)
SUN397 (%)
Food101 (%)
Oxfordpet (%)
Flowers102 (%)
DTD (%)
TinylmageNet (%)
ImageNet (%)
Caltech101 (%)
Caltech256 (%)
StanfordCars (%)
PCAM (%)

Method Average (%)

FT-TeCoA-1/255 [32]  40.82 24.41 70.70 1921 1445 28.13 23.05 28.13 12.57 1933 1648 24.02 40.56 12.69 53.68 26.96
PMG-AFT-1/255(ours) 66.99 38.28 76.17 24.23 14.92 33.59 2343 3438 24.15 391 1484 17.26 24.02 45.05 14.64 57.64 31.95
FT-TeCoA-2/255[32] 3221 11.71 5273 10.63 273 742 14.06 2421 1608 039 585 785 1757 21.68 156 5355 17.51
PMG-AFT-2/255(ours)  63.28 26.56 66.79 1383 3.18 7.64 7.81 30.07 21.15 0.00 449 8.07 18.16 27.66 195 54.79 22.21
FT-TeCoA-4/255[32]  29.29 9.18 4628 4.63 039 000 078 2148 1295 0.00 1.75 136 13.67 11.78 0.00 53.51 12.94
PMG-AFT-4/255(ours) 63.28 21.87 59.96 7.17 042 039 058 2656 20.11 000 195 136 15.03 12.63 0.00 53.57 17.80

EuroSAT (%)
w
— | Fgvc_Aircraft (%)
w

Table 9. Zero-shot clean accuracies. We fine-tune the model on TinyImageNet [12] with PGD-10 [30] of different perturbation bounds
(¢ = 1/255,2/255 and 4/255) and evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the average
accuracy, with the best average result shown in bold.

CIFARI10 (%)
CIFAR100 (%)
STLI10 (%)
SUN397 (%)
Food101 (%)
Oxfordpet (%)
Flowers102 (%)
DTD (%)
TinylmageNet (%)
ImageNet (%)
Caltech101 (%)
Caltech256 (%)
StanfordCars (%)
PCAM (%)

Method Average (%)

FT-TeCoA-1/255 [32]  66.79 41.01 89.25 47.01 52.81 7031 36.13 3594 18.88 48.83 43.67 2832 7298 37.89 37.89 46.99
PMG-AFT-1/255(ours) 8398 5839 9297 5641 6640 8476 4296 41.02 3528 6.25 46.87 56.75 3046 8294 4824 4824 55.71
FT-TeCoA-2/255 [32] 6230 36.52 87.30 50.79 5328 7148 39.06 3593 2037 585 4453 46.21 2812 7239 4140 5435 46.86
PMG-AFT-2/255(ours) 78.12 5429 91.01 5694 65.15 8554 41.01 37.89 3196 429 3515 54.60 2949 7929 46.09 54.68 52.84
FT-TeCoA-4/255 [32]  62.50 38.86 89.45 57.33 63.59 8046 4296 37.50 2936 3.51 40.82 53.94 2812 7695 42.07 49.88 49.83
PMG-AFT-4/255(ours) 77.34 49.41 91.60 56.26 65.85 87.10 40.43 3476 4088 429 29.10 5496 2890 77.66 4628 50.67 52.21

EuroSAT (%)
~
% | Fave Aircraft (%)

Table 10. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on TinylmageNet [12] by FT-TeCoA
and our method with different loss function term coefficients and combinations. We evaluate on 16 datasets (columns), presenting the
accuracy for each dataset as well as the average accuracy, with the best average result shown in bold. « and (3 represent two hyper-
parameters in the loss function L = Lyopust + ®Lgeneral + BLciean-

_ s g & s g &
S g - S S < g 3 ® S S <
g = = g S < S S E Z S = z g ~
s £ ¢ 5 s ¢ % & g7 £ £ z = 4 § £
Method 5} 5] a 2 g 3 z g 3 & £ £ 54 5 B 4 Average (%)
FT-TeCoA [32] (« = 0,8 = 0) 40.82 2441 70.70 19.21 1445 28.13 23.05 28.13 12.57 3.13 1933 1648 24.02 40.56 12.69 53.68 26.96

PMG-AFT (a = 1, 8 = 0) (ours) 5546 2929 7324 2148 1070 27.73 1855 31.64 2558 0.78 6.64 1437 1738 48.69 14.84 58.89 28.44
PMG-AFT (a = 1, 8 = 1) (ours) 66.99 3828 76.17 2423 1492 3359 2343 3438 2415 156 1484 1726 2421 4505 14.64 57.64 31.95
PMG-AFT (a = 2, 8 = 1) (ours) 69.72 3476 74.02 21.57 10.07 2929 1796 3320 30.79 0.78 625 1406 2207 3951 11.13 56.02 29.45
PMG-AFT (o = 1, 3 = 2) (ours) 6543 38.67 7793 2503 1531 3632 2421 3593 2350 0.78 1699 17.69 2421 4674 1425 57.36 31.52
PMG-AFT (o = 0.5, = 1) (ours) 58.00 34.76 75.00 2441 1601 3476 2480 3320 1985 039 1875 1812 2343 46.68 1582 56.64 31.28
PMG-AFT (o = 1,3 = 0.5) (ours)  64.84 3691 7558 2329 13.67 30.85 22.65 3398 2487 1.17 11.13 1632 2246 4466 13.67 57.81 30.86

Table 11. Zero-shot clean accuracies. We fine-tune the model on TinylmageNet [12] by FT-TeCoA and our method with different loss
function term coefficients and combinations. We evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the
average accuracy. o and (3 represent two hyper-parameters in the loss function L = Lyopust + ®Lgenerat + BLciean-

=Y S S g Py = _ = £) o s b S
s 0z £ 3 = £ F ¢ 3 - 3 % & z
£ £ 2 g 3 £ H g < = g = E E =z
Method S [3) % 2 £ ) = a 3 =) £ S S ] g Average (%)
FT-TeCoA [32] (a« = 0,8 = 0) 66.79 41.01 89.25 47.01 5281 70.31 36.13 3594 18.88 48.83 43.67 2832 7298 37.89 54.29 46.99

61.13  60.62 2421 80.07 43.94 59.61 58.28
57.81 55.71

PMG-AFT (a = 1, 8 = 0) (ours) 86.52 6543 95.89 57.81 7195 8320 44.14 42.18 4641
PMG-AFT (a = 1, 8 = 1) (ours) 8398 5839 9297 5641 6640 84.76 4296 41.02 3528
PMG-AFT (o = 2, 3 = 1) (ours) 87.30 59.76 9433 57.58 71.09 8437 4375 40.62 51.56 3554 5894 3144 8346 5195 56.19 57.20
PMG-AFT (a = 1, = 2) (ours) 80.66 53.51 9199 5536 6492 8398 41.79 39.84 31.77 4726 5546 2988 81.51 4648 5731 54.19
PMG-AFT (o = 0.5, = 1) (ours) 77.93 51.56 91.40 5392 63.51 8281 42.18 38.67 2897 6. 50.39 5410 29.29 8040 45.89 56.75 53.37
PMG-AFT (a = 1,3 = 0.5) (ours) 84.96 60.93 94.14 57.12 6726 8554 4375 4101 3958 585 4746 5777 3027 83.65 49.80 5848 56.72
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Table 12. Adversarial zero-shot robust accuracies under PGD-10 [30] attack. We fine-tune the model on TinyImageNet [12] by our method
under the selection of different feature layers and distance metric. We evaluate on 16 datasets (columns), presenting the accuracy for each
dataset as well as the average accuracy, with the best results shown in bold.

" - g € - - 9

s g S N = 3 S s c Y 3 = 2 S S

= z S 8 g & F < = < g Z E E Z s

£ g 3 zZ E g z a g B ] 2 2 g <
Method ] o 2 2 £ & = a 3 & & L S S 3 4 Average (%)
Output + KL 66.99 38.28 76.17 2423 1492 33.59 2343 3438 24.15 391 1484 17.26 24.02 45.05 14.64 57.64 31.95
Output + Lo 41.21 2441 7050 20.61 1445 31.25 22.85 2890 1438 0.78 19.53 1746 2421 41.60 1191 51.67 27.23
Feature + Lo 40.62 21.09 70.50 11.61 11.71 20.70 833 859 1044 039 2812 1433 1796 3795 9.57 54.50 22.90
Feature + COS  53.32 28.12 67.77 1333 10.23 29.68 14.58 1250 10.01 1.17 10.15 14.14 1640 43.88 1347 53.84 24.53

Table 13. Zero-shot clean accuracies. We fine-tune the model on TinyImageNet [12] by our method under the selection of different feature
layers and distance metric. We evaluate on 16 datasets (columns), presenting the accuracy for each dataset as well as the average accuracy,

with the best average result shown in bold.

< < S S ~ ~ S
g £ 2 z g g : g 2 J 2 E) E E g E
Method 5 g Z 2 g 3 z a g & £ E 5} 5 3 S Average (%)
Output+ KL 8398 5839 9297 5641 6640 8476 4296 41.02 3528 625 4687 5675 3046 8294 4824 4824 55.71
Output + L 68.55 4355 8945 5033 54.06 7421 3632 3671 21.68 7.81 49.02 4632 2851 73.11 39.84 51.95 4821
Feature + L,  59.18 31.83 86.52 3373 3140 4218 21.09 1796 1590 17.57 5605 3359 2519 5944 2226 5931 38.32
Feature + COS  80.66 48.63 93.55 5552 67.10 6835 39.58 3593 3629 1679 4238 54.18 2441 8190 4921 53.24 52.98
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