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In this supplementary material, we include more implementation details of the architecture of the proposed degradation
predictor (Section A) and the severity conditioning module (Section B). Besides, we provide a visualization of each inter-
mediate result in PDAC iterations in Section C and more visual examples on multi-coil reconstruction on fastMRI knee and
Stanford2D FSE datasets in Section D.

A. Architecture of Degradation Predictor
During each iteration of PDAC, we learn the decomposed degradation as an auxiliary task along the reconstruction process.
In the context of accelerated MRI, this decomposed degradation corresponds to the Cartesian sampling mask Mt on the
k-space, which could be simply represented using a binary vector mt. Specifically, we introduce a degradation predictor Pθt

to estimate a probability vector pt ∈ R1×d indicating the reconstruction confidence on each frequency column in the current
recovered k-space Z̃t ∈ CC×H×W , d = W . The detailed architecture of Pθt is illustrated in Figure A. Consequently, mt can
be obtained by adding extra support, indicating the location of frequency columns to preserve, on the previous mask mt−1.
Such support is selected from the indices of several top largest values in pt.
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Figure A. The detailed architecture of the proposed degradation predictor Pθt . It estimates the probability pt indicating the confidence on
each frequency column in the reconstruction Z̃t.
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B. Architecture of Severity Conditioning Module
During each iteration in PDAC, the network input zt−1 suffers from a specific degradation pattern in the k-space which is
characterized by Mt−1. Therefore, we propose to integrate such information on the degradation severity indicated by mt−1

together with the previous probability vector pt using a severity conditioning module Eθt . The detailed architecture of Eθt

is shown in Figure B, where the information of masked probability mt−1 ⊙ pt−1 is embedded via the adaptive layer norm
(adaLN) [2] into the network.
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Figure B. The detailed architecture of the proposed severity conditioning module Eθt . It integrates the information in the masked confi-
dence mt ⊙ pt via adaptive layer norm (adaLN) into the Swin transformer blocks [2].



C. Visualization of Progressive Reconstruction
Figure C demonstrates the each intermediate results of decomposed degradation Mt, reconstructed k-space zt and recon-
structed MR images xt, respectively, with total iteration T = 8. With the merit of the proposed progressive divide-and-
conquer, each iteration in PDAC selectively retrieves information within specific segments of the null space. The information
in the k-space is restored progressively from low frequencies, which is easier to recover, to more challenging high frequen-
cies, as shown in the second row in Figure C. Note that the artifact on the boundary of the images xt is due to the fact that the
training loss and evaluation metrics are only calculated on the central 320 × 320 part of the images, following the previous
setting [1, 4] .
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Figure C. Visualization of each intermediate results of decomposed degradation Mt, reconstructed k-space zt and reconstructed MR
images xt, respectively, with total iteration T = 8.



D. More Visual Examples
We provide more visual results of 8× accelerated MRI reconstruction on multi-coil fastMRI knee dataset in Figures D&E
and Stanford2D FSE dataset in Figures F&G.
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Figure D. Visual examples of 8× accelerated MRI reconstruction on multi-coil fastMRI knee dataset with zero-filled, U-Net [3], E2E-
VarNet [4], HUMUSNet [1], ours and ground truth.
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Figure E. Visual examples of 8× accelerated MRI reconstruction on multi-coil fastMRI knee dataset with zero-filled, U-Net [3], E2E-
VarNet [4], HUMUSNet [1], ours and ground truth.
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Figure F. Visual examples of 8× accelerated MRI reconstruction on multi-coil Stanford2D FSE dataset with zero-filled, U-Net [3], E2E-
VarNet [4], HUMUSNet [1], ours and ground truth.
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Figure G. Visual examples of 8× accelerated MRI reconstruction on multi-coil Stanford2D FSE dataset with zero-filled, U-Net [3], E2E-
VarNet [4], HUMUSNet [1], ours and ground truth.
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