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A. Architecture and Implementation Details
A.1. Architecture Details

Table 1 provides the architecture details of different RepViT
variants.

Table 1. Architecture details of RepViT variants.

Stage Resolution Config
RepViT
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2
× W

2
channels 24 28 32 32 40
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blocks 2 2 2 4 6

2 H
8
× W

8

channels 96 112 128 128 160
blocks 2 2 2 4 6
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4 H
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32

channels 384 448 512 512 640
blocks 2 2 2 4 2

A.2. Implementation Details

We follow the same training recipe as [13, 14, 25] on
ImageNet-1K [3]. We adopt the AdamW optimizer [20]
and the cosine learning rate scheduler. The initial learn-
ing rate is set to 4×10−3, and the minimum learning rate is
set to 1×10−5. The total batch size is set to 2048, and the
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Table 2. Training hyper-parameters for ImageNet-1K.

Hyperparameters Config
optimizer AdamW

learning rate 0.004
batch size 2048

LR schedule cosine
warmup epochs 5
training epochs 300 / 450
weight decay 0.025
augmentation RandAug(9, 0.5)

color jitter 0.4
gradient clip 0.02
random erase 0.25
label smooth 0.1

mixup 0.8
cutmix 1.0

weight decay is set to 2.5×10−2. For data augmentation,
we utilize Mixup [31], auto-augmentation [2], and random
erasing [32]. Table 2 provides the detailed training hyper-
parameters.

For object detection and instance segmentation tasks,
following [13, 14, 23, 24], we adopt AdamW optimizer with
an initial learning rate of 2×10−4 and train the model for 12
epochs with a standard resolution (1333×800). The back-
bones are initialized with pretrained ImageNet-1k weights.

For semantic segmentation, following [13, 14, 24], we
train the models on ADE20K [33] for 40K iterations with a
batch size of 32. We adopt AdamW optimizer, and employ
a poly learning rate schedule with the power of 0.9. The
initial learning rate is set to 2×10−4. We employ the stan-
dard resolution (512×512) for training and report the single
scale testing results on the validation set. The backbones
are initialized with pretrained weights on ImageNet-1K.

B. Robustness Evaluation
We present robustness evaluation results for RepViT models
in Table 3. Following [21, 25], we directly test ImageNet-
1K trained models on a series of robustness benchmark
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Table 3. Results on robustness benchmark datasets.

Model
Latency ↓

(ms)
Clean IN-C (↓) IN-A IN-R IN-SK

MobileOne-S1 0.9 75.9 80.4 2.7 36.7 22.6
FastViT-T8 0.9 76.7 68.7 7.9 37.2 25.8

MobileViG-Ti 1.0 75.7 70.9 5.8 38.9 26.1
SwiftFormer-XS 1.0 75.7 77.6 5.0 34.0 22.4
RepViT-M0.9 0.9 78.7 64.8 10.4 42.7 30.4
RepViT-M1.0 1.0 80.0 61.6 13.7 43.9 30.7
MobileOne-S2 1.1 77.4 73.6 4.8 40.0 26.4
MobileOne-S3 1.3 78.1 71.6 7.1 42.1 28.5
FastViT-T12 1.4 80.3 60.6 15.8 41.8 29.5
MobileViG-S 1.2 78.2 64.7 10.9 41.9 28.9

EfficientFormer-L1 1.4 79.2 64.0 11.1 41.8 29.2
SwiftFormer-S 1.2 78.5 66.3 9.1 38.7 27.8
RepViT-M1.1 1.1 80.7 59.9 15.5 44.9 31.7

PoolFormer-S12 1.5 77.2 67.7 6.9 37.7 25.2
MobileOne-S4 1.6 79.4 68.1 10.8 41.8 29.2
FastViT-S12 1.5 80.9 60.3 17.3 42.1 29.9

FastViT-SA12 1.8 81.9 58.0 21.8 43.8 30.8
MobileViG-M 1.6 80.6 59.1 17.1 45.7 32.5

SwiftFormer-L1 1.6 80.9 58.0 16.8 44.5 31.2
RepViT-M1.5 1.5 82.3 55.1 22.7 47.2 34.0

PoolFormer-S24 2.4 80.3 60.6 14.5 41.4 28.8
PoolFormer-S36 3.5 81.4 58.4 18.5 42.1 30.3

MobileViG-B 2.7 82.6 53.9 26.0 48.8 35.7
EfficientFormer-L3 2.7 82.4 54.6 23.9 46.0 33.6
EfficientFormer-L7 6.6 83.3 52.6 29.9 47.6 34.8

SwiftFormer-L3 2.9 83.0 52.9 25.9 47.2 34.3
RepViT-M2.3 2.3 83.3 51.6 30.2 50.0 36.6

datasets, including (1) ImageNet-C [6], which comprises
algorithmically generated corruptions applied to the Ima-
geNet test set; (2) ImageNet-A [8], which includes naturally
occurring examples that are misclassified by ResNets [4];
(3) ImageNet-R [7], which consists of natural renditions of
ImageNet object classes, incorporating diverse textures and
local image statistics; (4) ImageNet-Sketch [27], which in-
cludes black and white sketches of all ImageNet classes,
obtained through google image queries. Similar to [19, 21,
25], we report mean corruption error (mCE) for ImageNet-
C. A smaller mCE indicates a higher level of robustness
exhibited by the model under corruptions. For other bench-
mark datasets, top-1 accuracies are presented.

As shown in Table 3, RepViT demonstrates strong ro-
bustness to corruptions and promising domain generaliza-
tion capabilities, outperforming previous state-of-the-art
models. For example, compared with EfficientFormer-L3,
RepViT-M2.3 obtains 3.0 improvement in terms of mCE on
ImageNet-C with a smaller latency. Besides, it significantly
outperforms SwiftFormer-L3 by 4.3%, 2.8% and 2.3% top-
1 accuracies on ImageNet-A, ImageNet-R and ImageNet-
Sketch, respectively. These results well demonstrate the
strong robustness behaviors of RepViT models.

Table 4. Aerial semantic segmentation results on iSAID. Back-
bone latencies are measured with image crops of 512×512 on
iPhone 12 by Core ML Tools.

Model Latency ↓ mIoU

EfficientFormerV2-S0 6.3ms 58.56
RepViT-M1.0 4.2ms 64.49

EfficientFormerV2-S2 12.0ms 63.79
RepViT-M1.5 6.4ms 65.57

EfficientFormerV2-L 18.2ms 66.05
RepViT-M2.3 9.9ms 67.42

C. Generalizability to Out-of-Domain Tasks

In order to demonstrate the generalizability of our RepViT
to out-of-domain downstream tasks, we conduct experi-
ments on aerial semantic segmentation using the large-scale
iSAID [28] benchmark dataset. The iSAID dataset includes
a background class and 15 foreground classes over the aerial
objects. Its training, validation and test sets separately con-
sist of 1411, 458, and 937 images. Following [26], we in-
tegrate RepViT into the UperNet [29] framework and ini-
tialize the backbones with pretrained weights on ImageNet-
1K. Following [26], We adopt AdamW optimizer, and the
initial learning rate and weight decay are set to 6×10−5 and
1×10−2, respectively. All models are trained for 80k it-
erations with a batch size of 8. We introduce the state-of-
the-art EfficientFormerV2 [13] as the baseline. Besides, we
conduct all evaluations on a single scale for fair compar-
isons, following [26].

As shown in Table 4, RepViT shows superior perfor-
mance with low latencies. For example, RepViT-M1.0
presents a significant performance improvement of 5.93
mIoU over EfficientFormerV2-S0. RepViT-M1.5 outper-
forms EfficientFormerV2-S2 by a considerable margin of
1.78 mIoU with a nearly 50% latency. These results well
demonstrate the strong generalizability of our RepViT.

D. Visualization Results

D.1. Visualization on Downstream Tasks

Figure 1 and Figure 2 presents the visualization results
when integrating RepViT into the Mask-RCNN frame-
work [5] for object detection/instance segmentation and into
the Semantic FPN framework [11] for semantic segmenta-
tion, respectively. It can be observed that our RepViT based
models can accurately detect and segment the instance in
various images. It can also provide high-quality semantic
segmentation masks.



Figure 1. Visualization results for object detection and instance segmentation on COCO [15].

Figure 2. Visualization results for semantic segmentation on ADE20K [33]. The top row presents the ground truth masks and the bottom
row shows the mask predictions.

D.2. Visualization of the Training Process

To better show the benefit of each architectural design in-
corporated in our RepViT, we conduct visualization for the
top-1 accuracy during the training process. As shown in
Figure 3, the introduced architectural designs well improve
the optimization of the model, leading to the higher top-1
accuracy during the training process.

E. More RepViT-SAM Details and Results

E.1. Implementation Details

Following [30], we distill the image encoder, i.e., RepViT-
M2.3, directly from the ViT-H in the original SAM [12],
leveraging a simple MSE loss. Like [30], we set the stride
of 2 in the last downsampling depthwise convolution to 1
for making the output resolution compatible with that of
the image encoder in the original SAM [12]. To speedup
the training, we save the image embeddings from the ViT-H
beforehand without running the forward process of ViT-H
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Figure 3. The top-1 accuracy during the training process. Note
that these results are obtained without the distillation.

during the distillation, which is the same as [30]. Regard-
ing to zero-shot edge detection on BSDS500 [1, 22], we
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Figure 4. Mask predictions of SAM, MobileSAM, and RepViT-SAM with point prompts (top) and box prompts (bottom).
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Figure 5. Visualization results of SAM, MobileSAM, and RepViT-SAM for zero-shot edge detection on BSDS500.



follow [12] to prompt the model with a 16×16 regular grid
of foreground points. NMS is applied to remove redundant
masks. Then, we leverage a Sobel filter to the masks’ un-
threshold probability maps, along with standard lightweight
postprocessing, including edge NMS, like [12]. For trans-
ferring to zero-shot instance segmentation on COCO [16],
we leverage the state-of-the-art H-Deformable-DETR [9]
with Swin-L [18] as the object detector and prompt the
model with its output boxes, like [10, 12]. For the seg-
mentation in the wild benchmark, we follow [10] to equip
the Grounding-DINO [17] as box prompts to evaluate the
model on the zero-shot track.

E.2. Visualization of RepViT-SAM

We present the predicted masks of SAM [12], Mobile-
SAM [30] and RepViT-SAM with point and box prompts
in Figure 4. It can be observed that our RepViT-SAM
can make high-quality mask predictions similar to that of
SAM in various scenarios where MobileSAM may fail to
predict accurate masks. Additionally, we provide quali-
tative comparison results on zero-shot edge detection in
Figure 5. RepViT-SAM convincingly produces reasonable
edge maps, achieving comparable performance with SAM.
In contrast, MobileSAM may struggle to accurately gener-
ate edge maps in regions containing intricate details.
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