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1. Ablation Study on High-order Matrix
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Figure 1. Qualitative results of the refinement of our designed
high-order matrix. Each row from top to bottom represents the
query images, query labels, refined VTP by initial matrix, and re-
fined VTP by our proposed high-order matrix, respectively.

Table 1. Ablation study about our proposed high-order matrix re-
finement on the PASCAL-5i, “D” represents the initial matrix, R
represents the high-order matrix we designed.

D R mIoU (%) FB-IoU (%)
✓ 75.10 86.44

✓ 76.40 87.57

In order to verify the effectiveness of the higher-order
matrix, we conduct ablation experiments on the effect of
the higher-order matrix. As shown in Table 1, when utiliz-
ing our proposed high-order matrix to refine the prior in-
formation, it gets a better performance with 76.40 mIoU %
which is 1.3 % higher than utilizing the original attention
matrix, and the results of the two matrix fine-tuning meth-
ods are visualized in Figure. 1. It can be found that our
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Table 2. Ablation study about text prompts on PASCAL-5i, tf rep-
resents the target prompt and tb represents the non-target prompt.

tf/tb mIoU (%) FB-IoU (%)
“a photo of {target class}” 76.40 87.57“a photo without {target class}”
“a photo of {target class}” 71.32 83.78“not a photo of {target class}”

“a clean origami of {target class}” 73.97 85.64“a clean origami different from {target class}”

proposed higher-order matrix refinement can indeed extract
finer-grained prior information based on structure informa-
tion and strengthen the suppression of chaotic background
areas. Note that the experiments in this section follow the
same setting as the experiments in the text.

2. Ablation Study on Text Prompts
Different textual prompts directly decide the model’s under-
standing of image visual content, which further affects the
quality of the generated prior information, based on this,
we conduct ablation experiments on the content of the text
prompts, as shown in Table 2, the highest performance of
76.40% was achieved when using the text prompts we de-
signed.

3. More Visualizations
To further demonstrate the effect of our model, we show
more visualizations on the COCO-20i [3], Figure. 2 com-
pares more prior masks, and Figure. 3 provides a further
visualization of the final experimental results.

4. CLIP Capacity Concern: Fair Comparisons
Not only CLIP pretraining, but also ImageNet pretraining
may involve the tested novel classes. How to extract accu-
rate features from the pretraining model and transfer them
to few-shot segmentation is a more important issue than the
size or capacity of the pretraining model. Besides, the CLIP
model has been used in the few-shot task, e.g., CLIPSeg [2],
TIP-Apapter [5].
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Figure 2. Comparison of more prior information from COCO-
20i [3]. (a) Support images with ground-truth masks; (b) Query
images with ground-truth masks; (c) Prior information from pre-
vious approaches generated based on the frozen ImageNet [1]
weights.
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Figure 3. Qualitative results of the proposed PI-CLIP and baseline
(HDMNet [4]) approach under 1-shot setting from COCO-20i [3].
Each row from top to bottom represents the support images with
ground-truth (GT) masks (green), query images with GT masks
(purple), baseline results (red), and our results (yellow), respec-
tively.
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