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The supplementary information is summarised as fol-
lows. First, we provide more implementation details of the
model and show more visual examples of generated sets.
Second, we perform additional experiments to validate the
effectiveness of our method. Third, we present a detailed
analysis of more qualitative detection results.

1. Implementation Details

Our approach follows the finetuning-based methods of
FSOD, which can be divided into two stages. In the first
stage, the model is trained with adequate base class anno-
tations. In the second stage, finetuning the novel class with
scarce samples to make the whole detector more general.

(1) Base Class Training Stage. In the first stage, the
base class with adequate annotations is adopted to train the
model, so that the detector is provided with the information
that can be transferred to the novel class. We follow the
baseline [5, 7] for model training. Thus, the loss LTraining

of the base training model is defined as:

LTraining = LRPN + LRCNN (1)

where LRPN represents the loss of RPN, which generates
class-agnostic candidate proposals, and LRCNN indicates
losses of the class-relevant detection result.

(2) Novel Class Finetuning Stage. In this stage, to de-
couple the foreground/background of few-shot instances,
we add a split branch (Mask Head) to our baselines to learn
the mask of Cnovel samples. For the mask head, we added
a full convolution mask prediction branch to SAES follow-
ing the architecture in the previous work [3]. Thus, the loss
LFinetuning of the novel finetuning model is defined as:

LFinetuning = LRPN + LRCNN + LCon (2)

*Corresponding author.

where LCon indicates losses of only novel class mask re-
sults. As there are no semantic masks available for few-shot
objects, we need to rely on unsupervised semantic segmen-
tation methods. The unsupervised saliency detection [4] is
employed to learn the mask regions of novel class objects
and apply it as a prior. Pixel-level contrastive loss LCon

is used for the representation of foreground/background.
The optimization process of this loss is designed to mini-
mize the distance between embedding vectors belonging to
the same classes while pushing foreground and background
apart. In this way, a pixel embedding space is introduced as
a dense semantic representation to get the semantic segmen-
tation mask of the novel class instances. We adopt the same
enhancement set as MaskContrast [6] to generate positive
(X,X+) while ensuring that each image contains at least
part of the salient objects (> 10% of the area). The fea-
tures of negatives are saved in a memory bank. The masking
branch is only applied to finetuning, and it will be removed
during inference.

More visualizations of different sets are generated using
the base set and novel set of PASCAL VOC in Figure 1. The
synthetic set and saliency set are generated by SAES, which
augment the number of samples. The diversity would be im-
proved by fusing instances into different backgrounds. The
reconstructed set constructed by OREM further implements
semantic-guided non-linear enhancement.

2. Additional Expreiments

2.1. Experimental Results of G-FSOD Setting

The generalized few-shot object detection (G-FSOD)
aims to detect novel class samples without forgetting previ-
ously seen base classes. In this section, to validate the effec-
tiveness of our method in the G-FSOD setting, we present
the results of MS COCO following [7].

As shown in Table 1, our report includes metrics such
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# shots Method Overall #80 Base #60 Novel #20

AP AP50 AP75 AP AP

1
FRCN+ft [8] 16.2±0.9 25.8±1.2 17.6±1.0 21.0±1.2 1.7±0.2

TFA [7] 24.4±0.6 39.8±0.8 26.1±0.8 31.9±0.7 1.9±0.4
DeFRCN [5] 24.0±0.4 36.9±0.6 26.2±0.4 30.4±0.4 4.8±0.6

SNIDA 23.8±0.5 (-0.2) 35.2±0.4 (-0.4) 25.8±0.5 (-0.4) 29.4±0.3 (-1.0) 6.9±0.5 (+2.1)

2
FRCN+ft [8] 15.8±0.7 25.0±1.1 17.3±0.7 20.0±0.9 3.1±0.3

TFA [7] 24.9±0.6 40.1±0.9 27.0±0.7 31.9±0.7 3.9±0.4
DeFRCN [5] 25.7±0.5 39.6±0.8 28.0±0.5 31.4±0.4 8.5±0.8

SNIDA 26.1±0.6 (+0.4) 40.2±0.7 (+0.6) 28.5±0.4 (+0.5) 31.2±0.3 (-0.2) 10.9±0.3 (+2.4)

3
FRCN+ft [8] 15.0±0.7 23.9±1.2 16.4±0.7 18.8±0.9 3.7±0.4

TFA [7] 25.3±0.6 40.4±1.0 27.6±0.7 32.0±0.7 5.1±0.6
DeFRCN [5] 26.6±0.4 41.1±0.7 28.9±0.4 32.1±0.3 10.7±0.8

SNIDA 27.8±0.4 (+1.2) 42.8±0.6 (+1.7) 29.4±0.5 (+0.5) 32.8±0.4 (+0.7) 12.8±0.4 (+2.1)

5
FRCN+ft [8] 14.4±0.8 23.0±1.3 15.6±0.8 17.6±0.9 4.6±0.5

TFA [7] 25.9±0.6 41.2±0.9 28.4±0.6 32.3±0.6 7.0±0.7
DeFRCN [5] 27.8±0.3 43.0±0.6 30.2±0.3 32.6±0.3 13.6±0.7

SNIDA 28.7±0.4 (+1.9) 43.7±0.9 (+1.8) 30.6±0.7 (+1.8) 32.6±0.4 (0.0) 14.6±0.6 (+1.0)

10
FRCN+ft [8] 13.4±1.0 21.8±1.7 14.5±0.9 16.1±1.0 5.5±0.9

TFA [7] 26.6±0.5 42.2±0.8 29.0±0.6 32.4±0.6 9.1±0.5
DeFRCN [5] 29.7±0.2 46.0±0.5 32.1±0.2 34.0±0.2 16.8±0.6

SNIDA 30.2±0.2 (+0.5) 46.7±0.5 (+0.7) 32.9±0.2 (+0.8) 34.3±0.7 (+0.3) 17.9±0.6 (+1.1)

30
FRCN+ft [8] 13.5±1.0 21.8±1.9 14.5±1.0 15.6±1.0 7.4±1.1

TFA [7] 28.7±0.4 44.7±0.7 31.5±0.4 34.2±0.4 12.1±0.4
DeFRCN [5] 31.4±0.1 48.8±0.2 33.9±0.1 34.8±0.1 21.2±0.4

SNIDA 32.0±0.6 (+0.6) 49.1±0.7 (+0.3) 34.9±0.1 (+1.0) 35.1±0.5 (+0.3) 22.7±0.7 (+1.5)

Table 1. Generalized few-shot object detection (G-FSOD) performance on COCO dataset. For each metric, we report the average and 95%
confidence interval computed over 10 random samples. All comparison results refer from [7].

Novel Set 1 Novel Set 2 Novel Set 3 MeanMethod / Shots 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Baseline 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4 51.9
CutOut [2] 54.7 57.2 62.3 64.0 62.5 31.8 39.0 47.8 53.5 48.2 49.0 50.7 53.2 55.7 58.3 52.5

GridMask [1] 54.3 58.0 62.0 63.7 63.2 32.0 39.1 47.6 53.2 48.5 49.3 51.2 54.6 55.5 58.5 52.7
CutMix [9] 55.5 57.6 61.4 63.9 63.5 32.0 38.9 47.4 53.6 48.9 48.8 49.9 53.4 56.7 59.8 52.8

SNIDA 59.3 60.8 64.3 65.4 65.6 35.2 40.8 50.2 54.6 50.0 51.6 52.4 55.9 58.5 62.6 55.1

Table 2. The results of Cutout, GridMask, CutMix, and our method on three different splits of PASCAL VOC. RED/ BLUE indicate the
best and the second best performance. Our method significantly improves the performance under different shots and achieves competitive
performance compared with other augmentation methods for 3 novel splits.



Novel Set 1 Novel Set 2 Novel Set 3 MeanMasking Ratio 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

0% 55.5 57.6 61.4 63.9 63.5 32.0 38.9 47.4 53.6 48.9 48.8 49.9 53.4 56.7 59.8 52.8
30% 58.4 59.3 63.0 64.3 64.2 34.1 39.5 49.5 53.9 49.5 50.7 51.3 54.9 57.8 61.8 54.1
50% 58.1 60.2 63.8 64.6 65.0 34.6 39.8 49.8 54.2 49.4 51.3 51.9 55.4 58.2 62.1 54.6
70% 59.3 60.8 64.3 65.4 65.6 35.2 40.8 50.2 54.6 50.0 51.6 52.4 55.9 58.5 62.6 55.1

Table 3. Ablation study of different masking ratios in OREM on different splits of PASCAL VOC. Note the masking ratio here is not for
all patches of the entire image, but only for the foreground. The BEST performances are high-lighted in bold.

Novel Set 1 Novel Set 2 Novel Set 3 MeanMethod / Shots 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Baseline 57.3 59.9 63.7 64.1 63.7 33.7 39.3 47.1 54.4 49.6 49.4 51.3 55.2 58.0 61.0 53.9
Random 55.9 57.8 62.3 62.5 62.4 33.0 38.1 46.2 53.2 58.5 48.3 49.6 54.1 56.7 59.8 53.0

Misleading 56.5 58.2 63.1 63.0 63.1 33.3 38.3 46.7 53.5 59.1 48.8 49.9 54.7 57.1 60.5 53.5
Consistency 59.3 60.8 64.3 65.4 65.6 35.2 40.8 50.2 54.6 50.0 51.6 52.4 55.9 58.5 62.6 55.1

Table 4. Different semantic supervision in Semantic Discriminator of OREM on for 3 novel splits of PASCAL VOC.

as AP, AP50, and AP75 for all classes. Additionally, we
provide AP scores specifically for base and novel classes.
To augment our data and enhance the model’s exposure to
novel classes, we paste novel class instances in base class
images for data augmentation, reducing the training oppor-
tunities of the base class and thus damaging the perfor-
mance of the base class with only 1-2 shots.

However, for 3-10 shots, the base class performance has
been effectively improved, which can be attributed to differ-
ent degrees of occlusion when pasting novel class instances.
It increases the diversity of the base class samples and the
robustness of the network to the base class. For AP of novel
class, our method also outperforms others to achieve a new
state-of-the-art result, which intuitively indicates the effec-
tiveness of our idea.

2.2. Comparison among Augmentation Methods

Table 2 shows the results of CutOut [2], GridMask [1],
CutMix [9], and our method on different splits of PAS-
CAL VOC. We adopt DeFRCN [5] as the baseline. Our
approach outperforms other augmentation methods and ex-
cels across various splits. CutOut and GridMask remove
contiguous regions or disconnected pixel sets of input im-
ages and encourage the network to use the image context.
In contrast, our method attains semantic awareness through
foreground/background separation and fusion. The incor-
poration of semantic-guided non-linear transformations fur-
ther boosts instance diversity in our approach.

2.3. Ablation Study on All Novel Splits of VOC

Masking Ratio of OREM. We analyzed the impact of
varying masking ratios (k%) in OREM across different
splits of PASCAL VOC, where random patches are masked

on input instances. In Table 3, we applied different k% val-
ues in experiments with various splits. The best OREM
performance occurs at a masking ratio of 70%. A lower
ratio results in less diverse images, affecting model gener-
alization. Conversely, a higher ratio performs better perfor-
mance, thanks to accurate high-level semantic supervision
from the semantic discriminator loss.

Different Semantic Supervision. To validate the impact
of the different semantic supervision, we conducted experi-
ments within the semantic discriminator of OREM, involv-
ing three types of semantic supervision. Due to incorrect
semantic guidance, the results indicate that both the Ran-
dom and Misleading supervision resulted in a slight drop
in performance compared to the baseline. While the Con-
sistency supervision significantly improved overall perfor-
mance. Accurate high-level guidance preserves semantic
consistency in reconstructed images, while rich non-linear
semantic knowledge enhances quality and expressiveness,
especially with high masking ratios.

3. More Detection Results

As shown in Figure 2, some qualitative results of the pro-
posed 10-shot setting method are illustrated in the Novel
Split 1 of PASCAL VOC. The confidence threshold is set to
0.3 when visualizing results. The first four lines show the
successful results and the second two lines show the fail-
ure scenarios. In the first four lines, our method can accu-
rately locate two objects occluding each other, which indi-
cates that the decoupling of foreground and background is
critical for effective learning of objective semantic discrim-
inative features. In the second two lines, we show some
failure cases to analyze the cause of the detection error.



Synthetic Set Saliency Set Reconstructed SetBase class Novel Class

Figure 1. Visualizations of different sets generated using the base set and novel set of PASCAL VOC. The synthetic set and saliency
set are generated by SAES, which augment the number of samples. The diversity would be improved by fusing instances into different
backgrounds. MAE set constructed by OREM further implements instance-level non-linear enhancement. Best viewed with zoom-in.



Figure 2. Qualitative detection results of our 10-shot detection method under the Novel Split 1 of PASCAL VOC. The confidence threshold
is set to 0.3 when visualizing results. The first four lines show the successful results and the second two lines show the failed scenarios.
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