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1. Background for Diffusion Model
A diffusion model, in the context of machine learning and
particularly in generative modeling, is a type of model that
generates data by reversing a diffusion process. This pro-
cess gradually adds noise to the data, and then learns to re-
verse this process to generate new data.

The forward process is a Markov Chain that gradually
adds Gaussian noise to the data over a series of time steps.
If we start with data x0, after T time steps, the data becomes
a sample from a standard Gaussian distribution, xT , shown
as, {

xt =
√
αtxt−1 +

√
1− αtϵt−1,

xt =
√
ᾱtx0 +

√
1− ᾱtϵ,

(1)

where α is a noise coefficient based on time t, ᾱt =∏t
i=1 ᾱi, and ϵ is noise sampled from N (0, I). The formula

in the top line represents the single-step diffusion process,
while the formula in the bottom line allows for approximat-
ing the result of any step, i.e., xt, from x0 in one step.

The reverse process trains a model to approximate the
reverse conditional distribution p(xt−1|xt), shown as,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t)), (2)

where µ and σ2 is the mean and variance of the distribution
xt−1, θ is the model predicting ϵ from xt.

DDPM [3] and DDIM [6] are two sampling strategies in
reverse process. For DDPM, it learns to reverse the noise
addition process step by step to reconstruct the original data
from the noise. The model learns the distribution p(xt−1|xt

and predicts the noise ϵ, shown as,

µθ (xt, t) = µ̃t

(
xt,

1√
ᾱt
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, (4)

xt−1 = µθ (xt, t) + σθ(xt, t)z, (5)

where σθ is untrained time dependent constants and z is the
random Guassian noise.

DDIM simplifies the sampling process of DDPM and
allows for faster sampling and control over the generation
process. Specifically, DDIM introduces a skip-step sam-
pling strategy that significantly reduces the sampling time
of diffusion, and it is proven that this strategy does not af-
fect the accuracy of the diffusion results. For instance, in a
process where DDPM requires 1000 sampling steps, DDIM
can achieve similar results with just five sampling steps at
intervals, such as 1000, 800, 600, 400, and 200. The process

can be shown as,

xt−1 =
√

αt−1x0+
√
1− αt−1 − σ2

t ·ϵ
(t)
θ (xt)+σtϵt, (6)

where σt = η
√

1−αt−1

1−αt
· (1− αt

αt−1
), η is the DDIM [6]

sampling coefficient and ϵt ∼ N (0, I) is standard Gaussian
noise independent of xt.

Conditional Diffusion Model The conditional diffusion
model learns a conditional distribution pθ(x0|c). The pro-
cess can be shown as,

pθ (x0|c) = p (xT )

T∏
t=1

p (xt−1|xt, c) , (7)

p(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),
∑
θ

(xt, t, c)) (8)

2. Whole Process and Evaluation Metrics
2.1. Whole Process of Our S2HGrasp

Here we give a detailed explanation of the whole process of
our model.

During training process, as Algorithm 1 shows, our
model takes single-view scene point clouds Ps along with a
corresponding human grasp label H0 in MANO format [5]
as input. Ps and H0 are fed into the Global Perception mod-
ule and the DiffuGrasp module, respectively. In the Global
Perception, we get the features Fs of single-view scene
point clouds through a scene encoder and Fs will act as the
condition in DiffuGrasp. Then we pass Fs through the GSP
and the GCP for point cloud completion and single-view
point cloud classification tasks, respectively. This enables
the model to have global perception of partial objects. After
training and supervision in both the point cloud completion
and classification tasks, features Fs now roughly captures
the global characteristics of the object and we use them as
a condition for the DiffuGrasp module. In the DiffuGrasp
module, we add Gaussian noise to the normalised hand pa-
rameters and feed hand features Fh and scene features Fs

into a transformer decoder to predict the original hand pa-
rameters H′

0.
During testing process, as Algorithm 2 shows, the input

is single-view scene point clouds Ps. Similarly, the point
clouds go through the scene encoder to obtain features Fs.
Our model randomly samples hand parameters HT from a
Gaussian distribution, and then, using hand features Fh and
scene features Fs as condition, predicts the original hand
parameters H′

0. We employ a skip-step denoising strategy
similar to DDIM [6] to progressively generate reasonable



Algorithm 1 Training

Input: noise schedule α, extracted object feature Fo,
hand parameters H0, denoising transformer decoder θ,
normalising function Norm, de-normalising function
de-Norm.

1: repeat
2: Sample t ∼ Uniform(1, ..., T )
3: Sample ϵ ∼ N (0, I)
4: H0n = Norm(H0)
5: Htn =

√
ᾱtHon +

√
1− ᾱtϵ

6: Ht = de-Norm(Htn)
7: Fh = Encoder(MANO(Ht))
8: H′

0 = θ(Fo,Fh)
9: θ = θ − η∇θ|H′

0 −H0|
10: until converged

hand parameters. Note that the GSP and GCP in the Global
Perception module will not be used in testing process.

2.2. Evaluation Metrics

Penetration. The penetration metric primarily consists of
two parts: penetration depth and penetration volume. Pene-
tration depth is determined by the maximum distance from
the points on the hand within the object’s mesh to the ob-
ject’s surface. For the penetration volume, we voxelize the
hand and object meshes with a voxel size of 0.5 cm and
calculate the intersection shared by the two 3D voxels.
Grasp displacement. The grasp displacement is used to
indicate the stability of the hand grasping the object. To as-
sess stability, we simulate the object and generated grasp in
accordance with the procedure described in [2, 7]. We place
the generated hand grasp and the object in a simulation envi-
ronment, fixing the hand’s position and posture. The simu-
lator calculates the forces of the fingertips exerted on the ob-
ject according to penetration volume and the object’s self-
gravity, and then these forces will be used to calculate the
displacement of the object’s center of mass. The forces on
the fingertips have a positive correlation with the volume
of penetration of the fingertips into the object. In simple
terms, if the forces exerted by the fingertips on the object
are strong enough to counteract the object’s own gravity,
then the grasp is considered stable, and the calculated dis-
placement will be zero. However, if the forces exerted by
the fingertips are not strong enough, the object will move
under the influence of the combined effects of these forces.
We use this displacement to measure the grasp stability, and
compute the mean and variance of the displacement for all
samples in the testing set, where smaller displacement indi-
cates better grasp stability.
Perceptual score. Perceptual score is used to evaluate the
naturalness of the generated grasps. We employ a manual
scoring approach for all the test samples. Specifically, we

Algorithm 2 Sampling

Input: noise schedule α, extracted object feature Fo, de-
noising transformer decoder θ, normalising function
Norm, de-normalising function de-Norm.

1: Sample HT ∼ N (0, I)
2: for t = T, ..., 1 do
3: Ht = de-Norm(Ht)
4: F t

h = Encoder(MANO(Ht))
5: H′

0 = θ(Fo,F t
h)

6: H′
0 = Norm(H′

0)

7: ϵ
(t)
θ (Ht) =

√
1
ᾱt

·Ht−H0√
1
ᾱt

−1

8: σt = η
√

1−ᾱt−1

1−ᾱt
· (1− ᾱt

ᾱt−1
)

9: c =
√
1− ᾱt−1 − σ2

t

10: Sample ϵt ∼ N (0, I)
11: Ht−1 = H′

0 ·
√
ᾱt−1 + cϵ

(t)
θ (Ht) + σtϵt

12: end for
13: H0 = de-Norm(H0)
14: return H0

present all the generated grasps along with their correspond-
ing scene meshes and invite 50 participants to rate the nat-
uralness of these grasps, using a scale from 1 to 5, where
higher scores indicate higher naturalness.
Contact ratio. The contact ratio is used to analyze whether
there is contact between the hand and the object. We primar-
ily calculate the proportion of samples in the entire testing
set where the hand and the object contact. This is done by
measuring the distance from each point on the hand to the
nearest point on the object. We then assess whether there
are distances less than 0.5 centimeters in the sample, indi-
cating contact between the hand and the object. Contact
ratio provides an alternative perspective for evaluating the
validity of generated grasps.

3. More Analysis Experiments
We ablate the Global Category Perception, combination
of single-view point cloud and completion results and the
plane loss. We also provide additional experiments for
different time steps of DiffuGrasp, the selection of loss
weights, applying the Global Perception to CVAE and com-
parison between different categories of objects.

3.1. The Global Category Perception

We also ablate the Global Category Perception (GCP) in
the Global Perception module, as shown in Table 3. The
results indicate that the GCP module, through the single-
view scene point cloud classification task, helps the model
to better perceive the overall shape of the object, thereby
improving the stability of the grasp.



Time Step 4 5 8 10(ours) 12 15 20

Penetration
Depth(cm) ↓ 0.21 0.20 0.21 0.21 0.20 0.20 0.20
Volume(cm3)↓ 6.78 6.81 6.79 6.58 6.57 6.42 6.37

Grasp Displace
Mean(cm)↓ 2.69 2.72 2.70 2.73 2.76 2.80 2.81
Variance(cm)↓ 3.12 3.23 3.14 3.16 3.16 3.19 3.18

Contact Ratio(%)↑ 99.47 99.51 99.48 99.41 99.42 99.31 99.26

Table 1. Ablation study of different time steps.

Category Bottle Bowl Camera Knife Lotion pump Mug Trigger sprayer Wineglass
Number 5625 862 1013 1060 551 10353 197 137

Penetration
Depth(cm) ↓ 0.22 0.22 0.18 0.48 0.23 0.15 0.82 1.53
Volume(cm3)↓ 6.47 7.94 11.01 3.42 5.66 6.49 6.61 3.54

Grasp Displace
Mean(cm)↓ 2.68 3.99 3.65 1.64 2.05 2.74 2.24 1.48
Variance(cm)↓ 3.05 3.63 4.03 2.26 2.55 3.14 2.84 2.23

Contact Ratio(%)↑ 99.32 99.77 99.7 95.09 99.82 99.86 97.97 98.48

Table 2. Comparison between different categories of objects. “Number” presents the number of single-view scene point clouds for each
category of objects.

Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
w/o GCP 0.23 6.43 2.82±3.28 99.28

w/ GCP(ours) 0.21 6.58 2.73±3.16 99.41

Table 3. Ablation study of GCP.

Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
w/o comp 0.25 9.93 3.37±3.64 99.34

w/ comp(ours) 0.21 6.58 2.73±3.16 99.41

Table 4. Ablation study of combination of single-view point cloud
and completion results.

3.2. Combination of Single-view Point Cloud and
Completion Results

As mentioned in the main part, during training, we com-
bine the input single-view point clouds with the results of
point cloud completion to form a new object for calculating
the cmap loss and penetration loss. The results in Table 4
show that this method of combination effectively prevents
the generated hand from penetrating into the invisible parts
of the object and also enhances the stability of the grasp.

3.3. Plane Loss

As shown in Table 5, we ablate the role of our proposed
plane loss. The results demonstrate that our proposed plane
loss can slightly improve the quality of the grasp. However,
this loss function is to prevent the generated grasp from con-
tacting the tabletop. During the testing process, we observe
that in all test samples, the generated hand does not have
contact with the tabletop, which also confirms the effective-
ness of this loss function.

Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
w/o plane loss 0.21 6.71 2.87±3.31 99.15

w/ plane loss(ours) 0.21 6.58 2.73±3.16 99.41

Table 5. Ablation study of the plane loss.

Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
w/ GP 0.24 12.84 2.88±3.28 99.05

w/o GP(GC) 0.23 13.54 3.10±3.49 98.07

Table 6. Results of applying our Global Perception module (GP)
to GraspCVAE.

3.4. Time Steps of DiffuGrasp

In Table 1, we study the different time steps between differ-
ent time steps. The results show that using different time
steps yields similar results and the number of time steps
has a minimal impact on the results. Therefore, we select
T = 10 for the best overall performance.

3.5. Selection of Loss Weights

Fig. 1 shows the selection of the loss weights. Since each
loss function affects the others and evaluating grasp quality
requires a comprehensive consideration of various metrics,
analyzing a single loss function or evaluation metric is not
meaningful. Therefore, after determining the approximate
range of weights for each loss function, we considered all
loss functions together and chose embedding volume and
movement distance as the main indicators. In the table,
we compared 20 sets of main loss weights, where the pa-
rameters highlighted with a blue background represent our
selection for the best overall performance. Among these
two indicators, we prioritized movement distance because
ensuring grasp stability is paramount. As can be seen in
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Figure 1. Selection of loss weights. The weights highlighted with a blue background represent the best weights we select.

Figure 2. Visualization of generated grasps of testing sets constructed with HO3D [1] (left) and Obman[2] (right) objects.

the figure, the grasps obtained with our chosen parameters
ensure stability while also minimizing hand-object embed-
ding, indicating a high quality of the generated grasps.

3.6. Global Perception for CVAE

Table 6 shows the results of applying our Global Perception
module to GraspCVAE [4]. The results demonstrate that
applying our Global Perception module to GraspCVAE can
also reduce the penetration between the hand and the object
and enhance grasp stability. This confirms that our Global
Perception module indeed improves the model’s global per-
ception ability. It is not only effective for our diffusion-
based model but also beneficial for models based on CVAE.

3.7. Comparison between Different Categories

We select eight main object categories from our dataset and
statistically analyze the grasp metrics, as shown in the Ta-
ble 2. It is evident that different categories of objects have
varying shapes and, consequently have different levels of
grasping difficulty. For our model, the challenge posed by
different object categories to the Global Perception mod-
ule also varies. Overall, bottles and mugs present a lower

difficulty, whereas cameras are more challenging. The pri-
mary reason is that the shapes of bottles and mugs are rel-
atively simple, making it easier for the model to perceive
their overall shape. In contrast, cameras have more com-
plex shapes, making it harder to perceive their overall char-
acteristics, leading to generated grasps that are more likely
to penetrate into invisible parts of the object.

4. More visualization
4.1. Visualization of S2HGD Results

More visualization results of our S2HGrasp for S2HGD are
shown in Fig. 3. The results on the left are for View-S2HGD
and results on the right are for Object-S2HGD.

4.2. Visualization of HO3D and Obman Object Test-
ing Sets

Additional visualization results of HO3D [1] (on the left)
and Obman[2] (on the right) are shown in Fig. 2. We
choose 10 objects from HO3D and 30 from Obman dataset
to construct two testing sets. The results confirm that our
S2HGrasp has a generalization capability for unseen ob-
jects.



Figure 3. Additional visualization of generated grasps of our S2HGrasp on our S2HGD datasets. The grasps on the left represent the results
of View-S2HGD, while the grasps on the right represent the results of Object-S2HGD.
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