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–Supplementary Material–
Table 1. Importance of our proposed task-guided prompt (TGP) and task-unified prompt (TUP) employed in Skeleton-in-Context (SiC).
TGP and TUP are important designs as they address the challenge of multi-task training. Please refer to Sec. B for more discussion.

Methods
MP. (AMASS) PE. (H3.6M) JC. (3DPW) FPE. (H3.6M)

MPJPE ↓ MPJPE↓ N-MPJPE↓ MPJPE ↓ MPJPE ↓
80ms 160ms 200ms 320ms 400ms Avg. Avg. Avg. 40% 60% Avg. 200ms 300ms Avg.

Task-Specific Model: one architecture for one task
SiC (w/o TGP&TUP) 57.7 46.2 41.6 36.7 47.7 46.0 56.5 45.4 49.7 59.8 54.7 62.5 72.6 67.6

Multi-Task Model: one architecture (w. multiple task-specific heads) for multiple tasks
SiC (w/o TGP&TUP) 62.9 49.8 44.3 36.3 46.5 47.9 59.1 47.4 51.3 61.6 56.5 76.4 86.8 81.6

In-Context Model: one task-agnostic architecture for multiple tasks
Static-SiC 11.0 19.0 22.7 32.6 37.8 24.6 51.6 41.8 29.8 44.7 37.2 59.8 67.2 63.5
Dynamic-SiC 11.0 18.9 22.6 32.2 37.4 24.4 51.8 42.5 29.5 44.0 36.8 59.2 66.5 62.9

Overview. The supplementary material includes:
• Section A presents more details on our experiments and a

more detailed description of the datasets.
• Section B verifies the effectiveness of our Skeleton-in-

Context on multi-task synergistic training.
• Section C provides more detailed results both quantita-

tively and qualitatively.

A. Experimental Details
A.1. Implementation Details

We implement the proposed Skeleton-in-Context model with
the number of layers 𝑁 = 5, number of attention heads 𝐻 =
8, and hidden feature dimension 𝐶 = 256. For each prompt
input/target and query input/target, the sequence length is
𝐹 = 16. We implement Skeleton-in-Context with PyTorch.
In the default setting, during both training and evaluation,
for each query pair, we randomly select a prompt pair from
the training set of the same task as the query pair. We use
an AdamW optimizer with a linearly decaying learning rate,
starting at 0.0002 and decreasing by 1% after every epoch.
All tasks are unified into a one-off, end-to-end training pro-
cess, without any task-specific designs. The training takes
about 6 hours for 120 epochs on 4 NVIDIA GeForce RTX
4090 GPUs.

A.2. Datasets and Metrics

H3.6M (Human3.6M) is used for the pose estimation and
future pose estimation tasks. It is a large-scale dataset, which
contains 3.6 million video frames of actions involving 15
types and 7 actors. Following previous works [10], we use
subjects 1, 5, 6, 7, and 8 for training, and subjects 9, 11 for
testing, and preprocessing the poses. After preprocessing,

each pose has 17 joints. We use the Stacked Hourglass (SH)
networks [5] to extract the 2D skeletons from videos as input.
For pose estimation, we expect the model to estimate the
corresponding 3D skeletons. For future pose estimation, we
expect the model to predict and estimate at the same time
the future 3D skeletons in a time range of 300ms, given
the history 300ms of 2D skeletons. As we use the same
dataset on two tasks, it makes multi-tasking harder as the
model needs further context to correctly perceive and then
accomplish the task. In Skeleton-in-Context we use prompt
to guide the model to learn in context.
AMASS is used for the motion prediction task. It integrates
most of the existing marker-based Mocap datasets, which
are parameterized with a unified representation. We follow
common practices in human motion prediction [1, 3] to use
AMASS-BMLrub for testing and the rest of the datasets for
training. For motion prediction, we expect the model to
predict the future 3D motion sequence given the history 3D
motion sequence. The time ranges of the future and history
motion sequences are both 400ms, which is 10 frames under
the frame rate of 25 fps. As the model requires the sequence
to be of 16 frames, we pad the last poses 6 times.
3DPW (3D Pose in the Wild) is used for the joint com-
pletion task. It has more than 51k frames with 3D annota-
tions for challenging indoor and outdoor activities. For joint
completion, we construct 2 settings, where we respectively
randomly mask 40% and 60% of all the joints. We expect
the model to reconstruct the missing joints.
Metrics. For Motion Prediction (MP.), Joint Comple-
tion (JC.), and Future Pose Estimation (FPE.), we report
Mean Per Joint Position Error (mm) [2]. For Pose Estima-
tion (PE.), we additionally report another indicator, Normal-
ized Mean Per Joint Position Error (N-MPJPE) [10].



Table 2. Detailed results of pose estimation between our Skeleton-in-Context and multi-task models re-structured from task-specific models
or multi-stage models. We report Mean Per Joint Position Error (MPJPE).

Methods Venues Dire. Disc. Eat. Greet Phone Photo Pose Purch. Sit. SitD. Smoke Wait Walk WalkD. WalkT. Avg
siMLPe [4] WACV’23 56.4 65.3 69.2 68.7 71.7 98.3 57.9 66.8 91.7 129.9 68.4 72.2 61.3 77.1 63.5 74.6
EqMotion [8] CVPR’23 141.4 151.9 175.1 154.0 165.2 173.4 131.0 194.1 201.7 219.0 159.6 151.6 129.3 160.9 141.8 163.3
STCFormer [6] CVPR’23 46.3 52.7 51.2 48.5 53.7 70.3 48.3 48.3 72.9 100.0 54.6 50.3 38.4 56.7 41.8 55.6
GLA-GCN [9] ICCV’23 58.1 71.4 73.0 67.7 78.9 97.3 60.9 73.2 90.1 125.4 75.0 73.3 74.0 84.3 76.3 78.6
MotionBERT [10] ICCV’23 47.3 52.7 49.8 49.0 56.9 73.2 48.7 49.5 67.8 94.4 55.3 52.7 40.2 57.2 42.8 55.8
Static-SiC (ours) - 45.8 52.9 46.6 46.6 54.6 66.8 47.9 47.0 60.4 74.5 51.7 49.9 37.0 51.9 40.0 51.6
Dynamic-SiC (ours) - 47.0 52.1 48.8 47.4 52.6 69.1 47.1 46.6 60.4 74.5 52.3 49.1 37.5 52.1 40.1 51.8

Table 3. Detailed results of future pose estimation between our Skeleton-in-Context and multi-task models re-structured from task-specific
models or multi-stage models. We report Mean Per Joint Position Error (MPJPE).

Methods Venues Dire. Disc. Eat. Greet Phone Photo Pose Purch. Sit. SitD. Smoke Wait Walk WalkD. WalkT. Avg
siMLPe [4] WACV’23 61.2 73.4 63.9 67.6 64.2 79.9 62.2 76.1 68.8 88.0 62.1 65.1 69.7 80.4 71.9 66.4
EqMotion [8] CVPR’23 73.5 82.8 92.3 85.8 86.9 94.8 70.5 100.7 94.1 102.1 82.8 81.0 104.5 93.1 101.1 88.6
STCFormer [6] CVPR’23 59.8 68.9 58.3 69.4 62.7 80.2 63.5 85.2 72.0 90.4 62.1 68.1 72.4 81.5 80.0 67.0
GLA-GCN [9] ICCV’23 59.9 68.4 67.0 70.6 67.6 82.6 67.7 70.5 62.9 79.8 64.4 66.6 73.1 80.2 86.5 64.4
MotionBERT [10] ICCV’23 63.2 74.9 66.9 105.7 70.2 93.3 94.4 93.3 67.8 92.0 68.7 89.8 83.6 129.0 78.3 86.2
Static-SiC (ours) - 59.3 68.4 55.1 67.5 60.3 79.8 61.3 69.9 62.8 78.2 59.3 60.6 48.9 71.3 51.0 63.5
Dynamic-SiC (ours) - 59.7 67.3 55.4 67.8 57.8 79.1 59.4 68.6 62.6 79.4 59.4 60.4 48.4 70.4 49.9 62.9

B. Multi-Task Synergistic Training

In this section, we address the challenge brought by multi-
task training and demonstrate the effectiveness of our model
under multi-task learning of human motion representations.
First, we analyze the effect of negative transfer and how
it can limit multi-task training. Next, we evaluate the ef-
fectiveness of our proposed task-guided and task-unified
prompts (TGPs and TUPs) in addressing this challenge and
facilitating collaborative training between multiple tasks.

B.1. Negative Transfer in Multi-Task

A straight way to train a generalist multi-task model is to
collect the data from multiple tasks, format them into the
same shape, and directly train the model on them. However,
as explained in [7], a phenomenon named negative transfer
in multi-dataset training will occur and lead to poor results in
the above training method. As different tasks have their own
unique goals, they may confuse the model during training
without guidance from context, leading to performance drop
in testing. To demonstrate the effect of negative transfer, as
shown in Tab. 1, we train and test the backbone of our SiC
separately on four tasks, whose results are in Tab. 1 with gray
background. Note that the backbone here does not include
TUP and TGP. When we train the four tasks together, the
performance of the model decreases due to the data vari-
ability between the individual tasks, which can be attributed
to the negative transfer phenomenon [7]. The experiments
show that, without context guidance from prompts (TUP and
TGP), the multi-task training is limited by negative transfer
and not able to achieve satisfactory performance.

B.2. Multi-Task Synergistic Training

Our Skeleton-in-Context enables multiple tasks to be trained
in a unified way, we term it Multi-Task Synergistic Training.
With our proposed Task-Guided Prompt (TGP), SiC can per-
ceive context (the corresponding task-specific information)
from TGP, and accomplish the task accurately. Meanwhile,
in order to deal with data from different datasets and tasks,
which have different patterns and may affect the performance
if not processed properly, we introduce the Task-Unified
Prompt (TUP) as prior knowledge of the query target. As a
task-agnostic module, the TGP is able to encode the unified
human motion representations of various tasks. As Tab. 1
shows, with the proposed TGP and TUP, our SiC is able to
achieve impressive results on four tasks simultaneously.

C. Detailed Results and Visualization

C.1. Detailed Results

We report the action-wise results in pose estimation and
future pose estimation on H3.6M [2]. As shown in Tab. 2
and Tab. 3, our model outperforms other multi-task models
in each action on H3.6M, which verifies our model’s ability
to handle multi-tasks. Additionally, Dynamic-SiC performs
better than Static-SiC in most actions.

C.2. More Visualization

We provide more visualization results on four tasks in com-
parison with all the multi-task baselines that we mention
in the main text, as shown in Fig. 1, 2, 3, 4. Other models
are obviously unable to balance the resources of each task
during training, which leads to unsatisfactory results.
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Figure 1. Comparison of visualization between multi-task models and our Skeleton-in-Context on motion prediction.



Pose Estimation
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Figure 2. Comparison of visualization between multi-task models and our Skeleton-in-Context on pose estimation.



Joint Completion
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Figure 3. Comparison of visualization between multi-task models and our Skeleton-in-Context on joint completion.



Future Pose Estimation
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Figure 4. Comparison of visualization between multi-task models and our Skeleton-in-Context on future pose estimation.
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