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6. Rendering Details
Given a 3D model, we first normalize the length of its body
diagonal to 1. Then, we put the 3D model in front of the
camera with a distance of 1.2, i.e., the camera is pointed to
the centre of the bounding box of the object with a distance
of 1.2. Next, we randomly give a rotation and a scaling to
the object. The rotation is done by introducing a pair of el-
evation and azimuth randomly sampled from the ranges of
[-10◦, 40◦] and [0◦, 360◦], respectively. When introduc-
ing scaling, we restrict the 3D model to be always inside
[−0.5, 0.5]3, from where the query points are sampled in
both training and inference.

This rendering rule is implemented in both ShapeNet [5]
and Objaverse [10]. Note that positions of an object and the
camera are relative. If the object is assumed to be fixed, we
can tailor the rendering specifics by adjusting the camera
through rotation.

7. Visualization of Hole-Filled Slices
As our ablation studies already showed (Tab. 3), operating
on slice images without the holes filled provides more in-
formation about both the inside and outside structures of an
object, yielding better reconstruction quality. In Fig. 12, we
visually compared slice images with (left) vs. without holes
filled.

Hole-Filled Slices Unfilled Slices

Figure 12. Slicing with and without filling holes. The demon-
strated images are sliced along axis X of the object.

8. Details on Two Slicing Directions
As mentioned in Section 4, we utilize camera-aligned slic-
ing for Objaverse dataset where many 3D models feature
arbitrary orientations, i.e., they do not have clear canonical
poses. In other cases, e.g., for ShapeNet shapes, we rely on
the canonical poses of the objects and perform slicing along
the X , Y , and Z directions with respect to those canonical
poses. Fig. 13 illustrates and contrasts these two choices for
the slicing directions, using a chair example from ShapeNet
dataset.

The 3D models in ShapeNet possess canonical poses
(e.g., chairs consistently have a front orientation) and they
are aligned along the default X, Y, and Z axes. Conse-
quently, objects are always sliced along their default X, Y,
and Z axes regardless of the rendered views.

For 3D models in Objaverse, we use camera-aligned slic-
ing. As described in Sec. 6, the camera is fixed and an object
will be randomly rotated and scaled. We slice the bounding
boxes of the object along the axes in the camera world.

9. Whether to Estimate Camera Poses
For our method, camera pose estimation is necessary only
when we want to output 3D shapes in their canonical poses.
In ShapeNet, we follow most existing methods [6, 37, 43,
67] to produce 3D shapes in their canonical poses, which
involves camera pose estimation. We follow the strategy in
DISN [67] to estimate the camera poses. First, assuming
a fixed set of intrinsic parameters, we only need to pre-
dict a translation vector Θt ∈ R3 and a rotation matrix
Θr ∈ R3×3. Then, a CNN, e.g., VGG-16 [50], is trained
to estimate Θ̂t and Θ̂r from input view I . Afterwards, we
sample a point cloud P ∈ RNp×3 from the object along
with its camera-aligned version P ′. Finally, the loss func-
tion of the CNN is to align P ′ with P using Θ̂t and Θ̂r, i.e.,
Lcam = 1

Np
||P − (P ′Θr +Θt)||22.

However, in Objaverse, where many objects do not have
canonical poses and exhibit random orientations, we avoid
estimating the rotations and translations of objects, and re-
construct the 3D shapes as they are in the camera world.

10. Training Cost and Inference Speed
Tab. 4 makes a detailed comparison of training cost and in-
ference speed among single-view- reconstruction methods.
Our method does not rely on big pre-trained model like Sta-
ble Diffusion [46]. Compared to multi-view based methods,
our method runs much faster in the process of producing 3D
meshes from slice images because we employ neural signed
distance filed instead of NeRFs whose optimization is time-
consuming.

11. Concatenation of Slice Images in Diffusion
We perform DDPM [21] on the entirety of slice images that
can be stacked either on the color dimension or a spatial
dimension. Note that concatenating along a spatial dimen-
sion significantly increases complexity because of the self
attentions operated on the spatial dimensions in a diffusion
network. By default, we stack them on the color channel



Method Pre-trained model Training data Training GPU & time Infer. speed

DISN [67] VGG [50] SPN-Chair 1 × A40 for 1 day <5s
AutoSDF [37] ResNet-18 [20] SPN-Chair unknown <10s
NeRF-Img [43] VGG-16 [50] SPN-Chair 4 × A100 <30s
SSDNeRF [6] N/A SPN-Chair 2× 3090 for 6 days 45s-1min

Ours VGG-16 [50] SPN-Chair 1 × A40 for 2 days <10s(R)/<20s(G)

Real-Fusion [34] SD [46] Per-case opt. N/A 90min

One-2-3-45 [29] Zero-1-to-3 [30] Objv-40k* 2× A10 for 6 days ≈45s
Ours VGG-16 [50] Objv-40k 1× A40 for 3 days <10s(R)/<20s(G)

Table 4. Training cost and inference speed of single-view-
reconstruction methods. “SPN-Chair” denotes ShapeNet Chair
dataset. “opt.” denotes optimization. “Objv-40k” denotes a subset
from Objaverse with around 40k 3D models. ‘R’ and and ‘G’ de-
note regression-based and generation-based slicing, respectively.
Note that the first stage of One-2-3-45 (i.e., Zero-1-to-3) is trained
with nearly the whole Objaverse dataset. In the second stage, it is
trained with a subset in the scale of 40k 3D models. The inference
speed is tested on a single Nvidia-A40-GPU for all methods.

Method CD↓ F1↑ HD↓

Ours (G-C) 25.0 1.51 16.4
Ours (G-S) 20.0 1.51 14.1

Table 5. Quantitative results of single-view 3D reconstruction on
the Objaverse dataset. ‘G-C’ and ‘G-S’ denote concatenating the
slice images along the color and a spatial dimension, respectively.

to reduce the training and inference time. Tab. 5 provides
a quantitative comparison of these two concatenation meth-
ods, revealing that concatenating along a spatial dimension
achieves better performance than the color dimension. This
outcome is logical as the former can model the spatial cor-
respondence of different slice images throughout the dif-
fusion network. Given sufficient computational resources,
prioritizing concatenation along a spatial dimension is rec-
ommended.

12. View Inconsistency Problem

As mentioned in our main paper, recent methods [31, 32, 44,
54, 73] aim to enhance the consistency of synthesized views
by performing spatial attention across different views. In
Fig. 14, a comparison is made between Slice3D and Sync-
Dreamer [31] from these works. The findings indicate that
despite the utilization of expensive spatial attentions, the
challenge of maintaining view consistency persists. This
further substantiates the advantages of employing multi-
slices over multi-views.

13. Visualization of Predicted Slice Images

The predicted slice images for the examples in Fig. 7 and 8
can be found in Fig. 15 and Fig. 16, respectively. Notably,
our slice3D can produce slice images with a high level of
consistency.

14. More Visual Results
More visual results and comparisons are provided in Fig.
17 and 18 for ShapeNet, Fig. 19 for Objaverse, and Fig. 20
for Google Scanned Objects (GSO) [12]. As apparent, our
results respect the geometric details better than the other
techniques while they do not suffer from unwanted artifacts
or noise. Also compared to other techniques such as Au-
toSDF, it better respects the input image and does not re-
trieve a model that might look clean and noise-free but it is
far from the input image (e.g., Fig.17; first two rows).

15. Image Resolution
Due to limited computing resources, the resolution of our
input images and slice images is set to only 128. We plan
to increase the resolution to 256 or 512 in the future and
produce 3D meshes with better quality and details.
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Figure 13. Canonical-pose slicing v.s. camera-aligned slicing. In canonical-pose slicing, the slicing directions are determined by the
canonical pose of the object. In camera-aligned slicing, the slicing directions are determined by the orientation of the camera.

View Synthesis by SyncDreamer SyncDreamerInput Slice3D

Figure 14. Visual comparison against SyncDreamer [31], which aims to enhance the consistency by performing spatial attention across
different views. The red circles highlight the inconsistency across different synthesized views. For example, the pillars in the first chair
and the rear legs in the second chair. The blue circles highlight the artifacts in the 3D mesh.
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Figure 15. Visualization of the predicted (regressed) slice images from the input views.
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Figure 16. Multi-slice generation results and the meshes resulted from them.



Input DISN AutoSDF NeRF-From-Img SSD-NeRF OursOne-2-3-45

Figure 17. More visual comparison between single-view 3D reconstruction methods on ShapeNet chairs. DISN and our method (based on
regressive slicing) utilize the same estimated camera parameters. Two different views are displayed to remove view bias.

Input DISN NeRF-From-Img SSD-NeRF OursOne-2-3-45

Figure 18. Visual comparison between single-view 3D reconstruction methods on two ShapeNet cars.
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Figure 19. More results on Objaverse. “Failed” denotes no meaningful results after several optimizations of RealFusion.
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Figure 20. More results on GSO [12] dataset.



References
[1] Bisect - blender manual. https://docs.blender.

org / manual / en / 2 . 80 / modeling / meshes /
editing/subdividing/bisect.html. Accessed:
2023-11-15. 5

[2] Kfir Aberman, Oren Katzir, Qiang Zhou, Zegang Luo, An-
drei Sharf, Chen Greif, Baoquan Chen, and Daniel Cohen-
Or. Dip transform for 3D shape reconstruction. ACM Trans-
actions on Graphics, 36(4):Article 79, 2017. 4

[3] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-
cient geometry-aware 3d generative adversarial networks. In
CVPR, pages 16123–16133, 2022. 3

[4] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W
Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini
De Mello, Tero Karras, and Gordon Wetzstein. Generative
novel view synthesis with 3d-aware diffusion models. arXiv
preprint arXiv:2304.02602, 2023. 3

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3, 5, 9

[6] Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen
Tu, Lingjie Liu, and Hao Su. Single-stage diffusion NeRF: A
unified approach to 3d generation and reconstruction. arXiv
preprint arXiv:2304.06714, 2023. 2, 3, 6, 9, 10

[7] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in Neural Information Process-
ing Systems, 2019. 2

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, pages 5939–5948,
2019. 3

[9] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
CVPR, 2020. 1

[10] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In CVPR, pages 13142–
13153, 2023. 3, 5, 8, 9

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 3

[12] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. In 2022 In-
ternational Conference on Robotics and Automation (ICRA),
pages 2553–2560. IEEE, 2022. 6, 7, 10, 12

[13] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned gra-
dient descent. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2367–
2376, 2019. 4

[14] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view
stereo: A tutorial. Foundations and Trends® in Computer
Graphics and Vision, 9(1-2):1–148, 2015. 3

[15] Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu,
and Jonathan Li. Nerf: Neural radiance field in 3d vision,
a comprehensive review. arXiv preprint arXiv:2210.00379,
2022. 3

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 3

[17] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. Atlasnet: A papier-mâché ap-
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non-linear fem deformable object simulator. In Computer
Graphics Forum, pages 36–48. Wiley Online Library, 2013.
6

[52] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
3

[53] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi,
Lizhuang Ma, and Dong Chen. Make-it-3d: High-fidelity
3d creation from a single image with diffusion prior. arXiv
preprint arXiv:2303.14184, 2023. 3

[54] Shitao Tang, Fuyang Zhang, Jiacheng Chen, Peng Wang, and
Yasutaka Furukawa. Mvdiffusion: Enabling holistic multi-
view image generation with correspondence-aware diffusion.
arXiv preprint arXiv:2307.01097, 2023. 4, 10

[55] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional archi-
tectures for high-resolution 3d outputs. In ICCV, 2017. 1

[56] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do
single-view 3d reconstruction networks learn? In CVPR,
pages 3405–3414, 2019. 6

[57] Maxim Tatarchenko, Stephan R. Richter, René Ranftl,
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