
SynSP: Synergy of Smoothness and Precision in Pose Sequences Refinement

1. Motivation
1.1. Causes of Jitters at Joints

There are multiple reasons for joint jitters in a video, but
they are all caused by errors generated by the human pose
estimators. According to our knowledge, the errors leading
to jitters can be categorized as follows:
Miss error: Failure in joint localization.
Swap error: Confusion between the joints of different in-
dividuals, resulting in incorrect joint identification.
Inversion error: Confusion between joints within a person
due to their similarity, such as left and right hands.
Jitter error: Small localization error of a joint, which is
the main cause of joint jitters.

Image-based pose estimators are more likely to have
these errors due to a lack of temporal information compared
to video-based pose estimators. However, SynSP can im-
prove the performance of image-based estimators and make
them comparable to the video-based pose estimators, as
shown in Tab.2 of the manuscript.

1.2. Tension between Smoothness and Precision

Both the Smoothness and Precision objectives aim to min-
imize the discrepancy between predicted pose sequences
(from pose estimators) and ground-truth sequences (from
human annotation), with a focus on aligning the two in
terms of position and acceleration dimensions, respectively.
At first glance, these objectives appear to optimize the pre-
dicted sequences in a harmonious manner without conflict.
However, due to their lack of knowledge about the exact
position of the ground-truth data, both objectives attempt to
adjust joint positions according to their own criteria, lead-
ing to a tension relationship. The greater the tension, the
more uncertain the network is about the prediction.

This tension relationship prevents previous works from
achieving better performance, but we translate this disagree-
ment between smoothness and precision into the quality
cue of predicted sequences with the Pose Quality Encoding
module in SynSP, outperform previous works with much
shorter length of input sequences and lower time delay.

1.3. Pearson Correlation Coefficient

The Pearson correlation coefficient [2], commonly known
as Pearson’s r, is a statistical measure widely used in scien-

tific research to quantify the strength and direction of the
linear relationship between two continuous variables. It
possesses properties such as independence of scale, sym-
metry, and sensitivity to outliers, which is suitable for Diff1
and Diff2 (Please refer to Fig.1 of the manuscript for the
definition of Diff1 and Diff2).

We support our motivation by calculating Pearson’s r be-
tween Diff1 and Diff2 by the following procedure. First,
we take the difference between predicted sequences and
ground-truth sequences as Diff1, which is inversely pro-
portional to the quality of predicted sequences. Then we
train the base stage of SynSP with use SynSP while setting
the ratio of λa to λp is 5 and 0.5 (please refer to Equ.4 of
the manuscript for λa and λp), and use the difference of
their outputs as Diff1. Finally,the Pearson’s correlation co-
efficient between Diff1 and Diff2 is calculated to be 0.48.
Moreover, the correlation is observed to be lower in easily
recognizable areas such as the eye and nose when compared
to more challenging joints like the shoulder and hip.

2. Experiments
2.1. Datasets Details

Human3.6M dataset [3] is a widely used benchmark for
multi-view-based 3D human posture research, recording the
performance of 5 female and 6 male subjects, under 4 differ-
ent viewpoints, for training realistic human sensing systems
and for evaluating the next generation of human pose esti-
mation models and algorithms. This dataset has 1,559,752
frames for the training and 543,344 frames for the testing.
3DPW dataset [9] is an important outdoor dataset to evalu-
ate the effectiveness of video-based methods with occlusion
and crowded scenes, having 22,463 frames for the training
and 35,219 frames for the testing with accurate 3D pose in
challenging sequences, including walking in the city, going
up-stairs, etc.
AIST++ dataset [5] is a new multi-modal dataset of rapid
3D dance motion and music, covering 10 dance genres with
multi-view videos. This dataset has 5,858,138 frames for
the training and 2,851,927 frames for the testing.
CMU-Mocap dataset [8] contains the vast majority of
daily behaviors like walking, swimming and climbing, with
the exception of flying and rock climbing mentioned on the
official website. We split this dataset into 2,241,016 frames
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for the training and 755,857 frames for the testing.
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Figure 1. Illustration of 2D, 3D, and SMPL representations.

Pose Representations. As mentioned in Sec.2 of the
manuscript, there are 2D, 3D, and SMPL representations for
the human pose, and heir visualization is shown in Fig. 1.

2.2. Comparison with more methods.

There are also some methods[4, 10] with a super-long win-
dow length, and the comparison with them is shown in
Tab. 1. Both DeciWatch [10] and HANet [4] employ a
larger window size setting, which may potentially result
in overfitting on normal-scale datasets such as H36m and
3DPW, while offering an advantage on large-scale datasets
like AIST++.

Table 1. Comparison with DeciWatch and HANet.

Dataset Method WS MPJPE Accel

Human3.6M

FCN 1 54.6 19.2
FCN+DeciWatch 1+101 52.8 1.5
FCN+HANet 1+101 51.8 2.0
FCN+SynSP 1+8 51.4 1.0
FCN+SynSP* 1+8 41.8 1.0

3DPW

PARE 1 78.9 25.7
PARE+DeciWatch 1+101 77.2 6.9
PARE+HANet 1+101 77.1 6.8
PARE+SynSP 1+8 76.2 6.2

AIST++

SPIN 1 107.7 33.8
SPIN+DeciWatch 1+101 71.3 5.7
SPIN+HANet 1+101 69.2 5.4
SPIN+SynSP 1+8 84.6 6.1

2.3. SynSP’s Other Outputs

Due to page limitations, the outputs produced by the Ac-
celeration Branch and Position Branch will be shown and
discussed here.

As shown in Tab. 2, we display the three outputs with
Human3.6M + FCN [7], 3DPW + TCMR [1], and Hu-
man3.6M + PPT [6]. In the later two experiments, results
from the branches are less accurate than the input, probably
because it is more difficult to resolve the tension relation-
ship between smoothness and precision at the base stage,
and the network prefers to solve the acceleration errors first.

Table 2. Outputs from the two stages with different pose estima-
tors. AB output represents the output from Acceleration Branch,
and PB output represents the output from Position Branch.

Method Type MPJPE Accel

FCN

input 54.6 19.2
AB output 44.5 1.04
PB output 43.0 1.09

final output 41.8 0.98

TCMR

input 86.5 6.75
AB output 88.5 3.92
PB output 88.4 5.99

final output 86.1 5.90

PPT

input 25.1 11.6
AB output 29.9 1.14
PB output 29.6 1.15

final output 21.5 1.10

2.4. Analysis of Window Length.

The window size of 8 was adopted for pose sequences in the
manuscript, as this setting is time-saving and sufficient to
demonstrate the capability of SynSP. Here, we also explored
the effect of window length on the performance of SynSP
on the Human3.6M dataset with pose estimator FCN and
the AIST++ dataset with pose estimator VIBE as shown in
Tab. 3. However, increasing the window length did not re-
sult in the expected improvement for SynSP’s performance.
Both FCN and VIBE methods exhibited a similar trend for
the evaluation, where MPJPE achieved its minimum value
with a window length of 16, and the Accel error decreased
with an increase in window length.

Considering Equ.4 of the loss function presented in the
manuscript, we believe that the window length does not af-
fect SynSP’s attention towards precision and smoothness.
Therefore, we can hypothesize two reasons for this trend:
1) an increase in window length indeed improve the perfor-
mance of SynSP in Precision (MPJPE), since more tempo-
ral information can be referenced to correct the predicted
poses; 2) self-attention module is friendly for NLP tasks
with robust semantic values for input. However, for pre-
cise numerical values, as the number of tokens increases,
the calculated attention in the self-attention module may be
more easily distracted and result in errors. Since it is dif-
ficult to replace transformer-based SynSP with other back-
bone, e.g., CNN and RNN, verifying these two hypotheses
becomes challenging. We will conduct more experiments in
the future to test them.

2.5. Exploration of SynSP’s Structure

After the base stage, a straightforward approach would in-
volve averaging these outputs and replicating the base stage



Table 3. Analysis of window size. WS denotes window size.

Dataset/Method WS MPJPE PA-MPJPE Accel

Human3.6M
/FCN

1 54.55 42.20 19.17
1+8 41.78 40.13 1.02

1+16 40.11 31.27 1.13
1+32 42.79 33.75 3.51

AIST++
/VIBE

16 106.90 72.84 31.60
16+8 77.00 61.47 4.32
16+16 68.87 53.94 7.39
16+32 70.39 56.02 9.20

pipeline once again. However, there is no improvement
with this operation as we test in Human3.6M + FCN [7]
and 3DPW + TCMR [1]. We suspect that the output of
base stage loses the original predicted position information,
which affects the precision and makes the refinement stage
useless compared with the baseline.

2.6. Acceleration for Sliding Window Average Al-
gorithm

The Sliding Window Average Algorithm (SWAA) is essen-
tial for motion refinement methods to average poses of the
same frame from multiple predictions, thereby optimizing
one pose from multiple time points. SWAA can reduce
the MPJPE error by 27.1% and the Accel error by 45.4%
for SmoothNet and SynSP in the Human3.6M dataset with
FCN estimators. As shown in Tab.4 of the manuscript, the
delay mainly comes from the waiting time for real-time in-
put video. For videos that have already been processed, the
calculation speed of SWAA is particularly important. As
shown in Fig. 2, we accelerate the SWAA through convolu-
tion operation and reduce the time of SWAA calculation to
0.374% of the original, further enhancing the efficiency of
motion refinement methods.
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Figure 2. Illustration of Sliding Window Average Algorithm
(SWAA) for parallel computing. Take the output window length
of 4 as an example. The numbers in the figure represent the frame
number of the output, and each column represents the output se-
quence of the network. It can be observed that the calculation of
SWAA can be implemented in convolution operation (the black
wire frame represents the convolution kernel).

2.7. Exploration of Other Input Combinations.

Limited by space, we discuss about other combinations of
input pose sequences in detail here. Interestingly, we find
that even if the input poses are not in the same frame and
from different people, i.e., a random combination, it can
bring a small performance improvement as shown in Tab. 7
of the manuscript. During inference, input people with sim-
ilar poses as much as possible at the same time, and the
results will be further improved. We think that the network
may use good pose sequences to repair those poses with jit-
ters.

3. Limitations and Future Work.

Compared with SmoothNet which can be trained across
multiple representations by its temporal structure, we can-
not pretrain the SynSP among different representations. Al-
though our method achieves better results, we still plan to
modify the structure of the transformer to enable cross-
representation training and inference. Moreover, we tend
to extend our multi-view pose refinement to multi-person
pose refinement, which has been verified by Tab. 7 in the
manuscript.
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