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Supplementary Material

A. Deferred Theory
We present deferred proofs and derivations in this section. In the beginning, we justify several claimed properties of JKL

(Eq. 4). Then we formally derive ESD (Eq. 8) via our proposed objective JEnt (Eq. 7). Lastly, we prove that Classifier-Free
Guidance trick (CFG) (Eq. 9) can be used to implement ESD.

A.1. Justification of Vanilla KL Divergence JKL

Let us consider KL divergence objective restated from Eq. 4:

JKL(✓) = Et⇠U [0,T ],c⇠pc(c)
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where we recall the notations: ↵t,�t 2 R+ are time-dependent diffusion coefficients, c ⇠ pc(c) is a camera pose drawn from
a prior distribution over SO(3)⇥ R

3, and g(✓, c) renders an image at viewpoint c from the 3D representation ✓. pt(xt|y) is
the Gaussian diffused image distribution denoted as below:
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where p0(x0|y) is the text-conditioned distribution of clean images. We also define qt(xt|c,y) as the Gaussian diffused
distribution of rendered images:

q
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where we assume x0 is independent of text prompt y given the camera pose and underlying 3D representation. Furthermore,
we assume the rendering process has no randomness, thus q✓0 (x0|c) = �(x0 � g(✓, c)) can be written as a Dirac distribution.

Now, we can derive the gradient of JKL(✓), as summarized in the following lemma:

Lemma 1 (Gradient of JKL). For any ✓, we have:

r✓JKL(✓) = �Et⇠U [0,T ],c⇠pc(c),✏⇠N (0,I)
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where xt = ↵tx0 + �t✏, and x0 = g(✓, c).

Proof. Due to the linearity of expectation, we have:
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Fixing t and c, we apply reparameterization trick:
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Notice that q✓t (↵tg(✓, c) + �t✏|c,y) = N (✏|0, I) by substituting to Eq. 14, which is independent of ✓. Thus (a) = 0. For
term (b), by chain rule, we have:

r✓ log pt(↵tg(✓, c) + �t✏|y) = ↵t
@g(✓, c)

@✓
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Plugging back to Eq. 18, we obtain:

r✓JKL(✓) = �Et⇠U [0,T ],c⇠pc(c),✏⇠N (0,I)
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= �Et⇠U [0,T ],c⇠pc(c),✏⇠N (0,I)
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where xt = ↵tg(✓, c) + �t✏.

Below we reproduce two results, which state both SDS (Eq. 1) and VSD (Eq. 2) optimize for JKL.

Lemma 2 (SDS minimizes JKL [31]). For any ✓, we have JSDS(✓) = JKL(✓) + const.

Proof. It is sufficient to show r✓JSDS(✓) = r✓JKL(✓). By expansion:
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
!(t)

@g(✓, c)

@✓
�tr log pt(xt|y)

�

| {z }
r✓JKL(✓)

+Et⇠U [0,T ],c⇠pc(c),✏⇠N (0,I)


!(t)�t

@g(✓, c)

@✓
✏

�
,

| {z }
=0

(24)

where the second term equals 0 because ✏ is zero mean and sampled independently.

Lemma 3 (Single-particle VSD minimizes JKL [56]). For any ✓, we have JV SD(✓) = JKL(✓) + const.

Proof. It is sufficient to show r✓JV SD(✓) = r✓JKL(✓). By a similar expansion:
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Then we conclude the proof by showing (a) = 0 due to the fact that the first-order moment of score functions equals zero:

(a) = Et⇠U [0,T ],c⇠pc(c)
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where we use change of variables by reversing the chain rule in Eq. 29, and the last step is because the integral equals one,
which is independent of ✓.



Remark 1. For multi-particle VSD, Lemma 3 may not hold. This is because the reverse chain rule in Eq. 29 is no longer
applicable as q✓t (xt|c,y) also becomes a function of ✓.

Finally, we show that optimizing JKL is equivalent to optimizing JMLE (Eq. 5). First, recall that:

JMLE(✓) = �Et⇠U [0,T ],c⇠pc(c)
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Then we state the following lemma:

Lemma 4 (JKL is equivalent to maximal likelihood estimation). For any ✓, we have JMLE(✓) = JKL(✓) + const.

Proof. Again, we show r✓JMLE(✓) = r✓JKL(✓):
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where the last step is basic reparameterization of xt = ↵tx0 + �t✏, and x0 = g(✓, c).

As we argue in Sec. 3 (Eq. 5), the root reason JKL degenerates to JMLE is because the entropy term in JKL becomes a
constant independent of ✓.

A.2. Derivation of Entropic Score Distillation
In this section, we derive the gradient for our entropy regularized objective (Eq. 8). We restate the entropy regularized objective
(Eq. 7) below:
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where the entropy term H[q✓t (xt|y)] is defined as:
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and distribution q
✓
t (xt|y) is defined as:

q
✓
t (xt|y) =

Z
q
✓
t (xt|c,y)pc(c)dc. (39)

Notice that JEnt(✓,�) = JMLE(✓) � �Et⇠U [0,T ]

h
!(t) �t

↵t
H[q✓t (xt|y)]

i
, therefore, to derive Eq. 8, we simply need the

gradient of the entropy term:

Lemma 5 (Gradient of entropy). It holds that:
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Proof. We expand entropy by reparameterization of q✓t (xt|y) as sampling two independent variables c, ✏:
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where it is noteworthy that rxt log q
✓
t simply denotes the score function of q✓t by explicitly indicating the derivative is taken

in terms of xt. Eq. 42 is obtained by path derivative. It remains to show (a) = 0. We recall that the first-order moment of a
score function equals to zero:
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where the last step involves a change of variable and the integral turns out to be independent of ✓.

As a consequence, we can conclude the update rule yielded by Eq. 7 in the following theorem:

Theorem 2 (Entropic Score Distillation). For any ✓ and � 2 R, the following holds:
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where xt = ↵tx0 + �t✏, and x0 = g(✓, c).

Proof. Since JEnt(✓,�) = JMLE(✓)� �Et⇠U [0,T ]
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by which we conclude the proof by merging two expectations.

A.3. Justification of Classifier-Free Guidance Trick
In this section, we first prove Theorem 1 and show that CFG trick (Eq. 9) can be utilized to implement ESD. To begin with, we
define another type of KL divergence as below:

JKL = Et⇠U [0,T ]
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Then we present the following lemma, which represents the gradient of JKL:

Lemma 6 (Gradient of JKL). It holds that:
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where xt = ↵tx0 + �t✏, and x0 = g(✓, c).

Proof. We prove by showing JKL is a special case of JEnt when setting � = 1:
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Now we prove Theorem 1 using previous results:

Proof of Theorem 1. It is sufficient to show that r✓JEnt(✓,�) = �r✓JKL(✓) + (1 � �)r✓JKL(✓). By Lemma 1, 6, as
well as Theorem 2, we can obtain:
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by merging two expectations.

Further on, our CFG trick implementation of ESD (Eq. 9) can be regarded as a corollary of Theorem 1 and Lemma 3:

Theorem 3 (Classifier-Free Guidance Trick). For any ✓ and � 2 R, r✓JEnt(✓,�) equals to the following:
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where xt = ↵tx0 + �t✏, and x0 = g(✓, c).

Proof. By Theorem 1, we know that r✓JEnt(✓,�) = �r✓JKL(✓) + (1� �)r✓JKL(✓). Moreover, by Lemma 3, we have
r✓JKL(✓) = r✓JV SD(✓). As a result, the following can be derived:

r✓JEnt(✓,�) = r✓JKL(✓) + (1� �)r✓JV SD(✓) (61)
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as desired after merging two expectations.

B. Illustrative Examples
Gaussian Distribution Fitting. In this section, we provide the necessary details on Fig. 3, where we fit a 2D Gaussian
distribution via SDS, VSD, and ESD. Suppose the targeted Gaussian distribution is p0(x0) = N (x0|µ⇤

,⌃⇤), where
µ⇤ 2 R

D is the mean vector and ⌃⇤ 2 R
D⇥D is the positive definite covariance matrix. Define differentiable function

g({b,A}, c) = b+Ac, where b and A are parameters to be fitted, and c ⇠ N (0, I) is a random variable sampled from a
standard Gaussian distribution. It is obvious that probability density function of g({b,A}, c) is qb,A0 (x0) = N (x0|b,AA>).
Our objective is to match p0 and q

b,A
0 by optimizing parameters b and A with SDS, VSD, and ESD. Notice that diffusion

perturbed p0 and q
b,A
0 are still Gaussian distributions. And the score functions used in score distillation can be computed in
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In our experiments, we run score distillation for 2k steps with 100 warm-up steps. The learning rate is set to 0.01. We observe
that SDS and VSD have similar convergence behavior as maximal likelihood methods. When increasing � from 0 to 1, i.e.,
enhancing the effect of entropy maximization, the fitted distribution gradually covers the targeted support.



SDS VSD ( ) ESD ( )

Figure 8. Image Reconstruction Example. We leverage SDS, VSD, and ESD to recover a high-resolution 2D image by matching the
distribution of its random crops with a pre-trained text-conditioned diffusion model. Prompt: An astronaut riding a horse in space.

2D Image Reconstruction. We also conduct 2D image experiments to demonstrate the working mechanism of ESD. We
focus on the image reconstruction task via partial observations [6, 57], where the optimized parameters represent a high-
resolution image and a random small window of the image will be rendered at each iteration of score distillation. Formally, let
✓ denote the high-resolution image, and g(✓,m) = ✓ �m, where m is a random binary mask. We choose r log pt(xt|y) as
a pre-trained text-to-image diffusion model, and y is the text prompt, specified as “An astronaut riding a horse in space” in our
experiments. Akin to [56], r log qt(xt) and r log qt(xt|m) are fitted via LoRA using cropped images. During training, we
fix training steps as 10k, learning rate as 1e-2 for ✓, and 1e-4 for LoRA. We also apply the cosine learning rate scheduler with
100 warm-up steps. We present qualitative results in Fig. 8. It demonstrates that SDS and VSD cause “Janus”-like problems
where each image contains duplicated instances while ESD avoids such issues and generates only one target object.

C. Experiment Details
In this section, we provide more details on the implementation of ESD and the compared baseline methods. All of them
are implemented under the threestudio framework and include three stages: coarse generation, geometry refinement,
and texture refinement, following [56]. For the coarse generation stage, we adopt foreground-background disentangled
hash-encoded NeRF [28] as the underlying 3D representation, and DMTet [40] for two refinement stages. All scenes are
trained for 25k steps for the coarse stage, 10k steps for geometry refinement, and 30k steps for texture refinement, for the
sake of fair comparison. At each iteration, we randomly render one view (i.e., batch size equals one). We progressively adjust
rendering resolution: within the first 5k steps, we render at 64⇥64 resolution and increase to 256⇥256 resolution afterward.

SDS [31]. Following the original paper, we set the CFG weight to 100. Additionally, we encourage sparsity of the density
field and penalize the mismatch between orientation and predicted normal maps. Lighting augmentation is also enabled
for SDS. The geometry refinement step is directly borrowed from VSD: a DMTet is initialized by NeRF’s density field
via marching cube while the end-to-end optimization with SDS is then conducted on the geometry representation for both
geometry and texture.

VSD [56]. We reuse the standard setting of VSD for all three stages. In particular, we fix the CFG coefficient to 7.5 and
only use single-particle VSD, conforming with our theoretical analysis. During the geometry refinement stage, we adopt SDS
guidance instead of VSD.

Debiased-SDS [12]. Our implementation of Debiased-SDS is built upon SDS. We enable both score debiasing and prompt
debiasing. For score debiasing, we follow the default setting and linearly increase the absolute threshold for gradient clipping
from 0.5 to 2.0. All other hyperparameters follow from SDS.

Perp-Neg [2]. Perp-Neg implementation is based on SDS as well. As suggested by the original paper, in positive prompts, we
leverage weights rinterp = 1�2|azimuth|/⇡ for front-side prompt interpolation and rinterp = 2�2|azimuth|/⇡ for side-back
interpolation. In negative prompts, the interpolating function is chosen as the shifted exponential function ↵ exp(��rinterp)+�.
Specifically, we choose ↵sf = 1,�sf = 0.5, �sf = �0.606,↵fsb = 1,�fsb = 0.5, �fsb = 0.967,↵fs = 4,�fs = 0.5, �fs =
�2.426,↵sf = 4,�sf = 0.5, �sf = �2.426. See [2] for more details on the meaning of these hyperparameters.



Janus Artifacts of VSD Janus-Free Results of ESD
View 1 View 2 View 1 View 2

A bright yellow rubber duck gently floats in a sudsy bathtub

A cat pondering the mysteries of the universe

An ice cream scoop that serves up scoops of cloud fluff instead of ice cream

Flamingo balancing on a sphere instead of standing in water

Floating bonsai tree, roots in mid-air

Orange monarch butterfly resting on a dandelion

Jellyfish with bioluminescent tentacles shaped like lightning bolts

A weathered hiking backpack with patches

Swan with feathers resembling soft, white origami folds

A cat with tiger stripes

A bald eagle carved out of wood A chimpanzee dressed like Henry VIII king of England

Janus Artifacts of VSD Janus-Free Results of ESD
View 1 View 2 View 1 View 2

Figure 9. More Qualitative Results. We present the two views of each object synthesized by VSD (ProlificDreamer) and our method,
respectively. Best view in an electronic copy.

ESD. Our ESD implementation is similar to VSD. We leverage the extrinsics matrix (4⇥ 4) as the camera pose embedding,
and condition the diffusion model by replacing its class embedding branch. We introduce CFG trick to linearly mix camera-
conditioned and unconditioned score functions fine-tuned with rendered images. We find CFG 0.5 generally yields desirable
results. We also set the probability of unconditioned training to 0.5. In particular, view-dependent prompting is disabled for
the fine-tuned score function.

D. More Qualitative Results

In this section, we present more qualitative results in Fig. 9. All text prompts are generated by GPT-4V and directly picked
from [58]. We mainly compare ESD with VSD to highlight the influence of the entropy regularization term. The observation
is consistent with our main text. The outcomes of VSD often exhibit broken geometries, duplicated objects, and multiple
signature views, which contradict the inherent characteristics of the generated subjects. ESD can effectively mitigate “Janus”
issues and generate more realistic contents.



E. Numerical Evaluation
Human Evaluation Criteria. In our human evaluation of Successful generation Rate (SR), a text prompt is labeled as
“successfully generated” if at least one of three random seeds yields a generation satisfying the criteria: ([2], Appendix A.2):

1. The rendered images show the requested object(s), which is positioned on the correct view.
2. The rendered images do not show hallucination including counterfactual details, for example, a panda has three ears.
3. The rendered images do not have unrealistic color or texture or massive floaters.

Extension of Tab. 1. In Tab. 2, we include standard deviations of all numerical results presented in Tab. 1. We note that
ESD exhibits a smaller variance of different metrics, indicating its training might be well-regularized and more robust.

Table 2. Quantitative Comparisons. (#) means the lower the better, and (") means the higher the better.

CLIP (#) FID (#) IQ (#) IV (") IG (") SR (")
SDS [31] 0.737±0.068 291.860±61.242 4.295±0.419 4.8552±0.342 0.123±0.053 15.00%
VSD [56] 0.725±0.072 265.141±58.549 3.149±1.234 3.5712±1.345 0.137±0.061 19.17%

ESD (Ours) 0.714±0.065 235.915±56.558 3.135±1.088 4.0314±1.285 0.327±0.185 55.83%

Breakdown Table. We provide a breakdown table to present quantitative evaluations of results in Fig. 4. The numbers
are reported in Tab. 3. The conclusion is consistent with our argument in Sec. 7. Our ESD consistently outperforms all
the compared baseline methods, especially in FID and IG. This implies that ESD effectively boosts the view diversity and
accurately matches the distribution between pre-trained image distribution and rendered image distribution.

Table 3. Quantitative Comparisons. (#) means the lower the better, and (") means the higher the better.

CLIP (#) FID (#) IQ (#) IV (") IG (") CLIP (#) FID (#) IQ (#) IV (") IG (")
Michelangelo style statue of dog reading news on a cellphone A rabbit, animated movie character, high detail 3d model

SDS [31] 0.694 365.304 4.469 5.119 0.145 0.712 200.084 4.365 4.970 0.138
VSD [56] 0.758 296.168 2.514 3.041 0.209 0.720 150.120 1.083 1.173 0.083

Debiased-SDS [12] 0.778 351.493 4.058 4.814 0.186 0.735 216.058 4.443 4.857 0.093
Perp-Neg [2] 0.793 306.918 3.970 4.572 0.151 0.727 176.279 2.453 2.665 0.086
ESD (Ours) 0.685 292.716 2.523 4.080 0.617 0.725 149.763 1.385 1.567 0.132

A rotary telephone carved out of wood A plush dragon toy
SDS [31] 0.853 309.929 3.478 4.179 0.202 0.889 243.984 4.622 5.008 0.084
VSD [56] 0.855 305.920 3.469 4.214 0.214 0.821 273.495 4.382 4.728 0.078

Debiased-SDS [12] 0.927 313.893 4.098 4.201 0.025 0.878 262.474 4.827 4.954 0.026
Perp-Neg [2] 0.868 308.554 3.488 4.021 0.153 0.839 309.276 4.691 4.816 0.027
ESD (Ours) 0.846 299.578 3.332 4.439 0.366 0.815 237.518 4.436 4.971 0.121

F. Limitations and Failure Cases
We note that by Theorem 1, ESD still optimizes for a mode-seeking KL divergence. This suggests that ESD may still lead
to mode collapse especially when the target image distribution is overly concentrated on one peak [36]. Careful tuning of �
is also necessary to balance the per-view sharpness/details and cross-view diversity. It also remains open whether ESD can
further benefit multi-particle VSD or amortized text-to-3D training [23].

Below we present a failure case produced by our ESD in Fig. 10, where the back view of the marble still contains a mouse
face while the side views exhibit duplicate ears. We point out that even though ESD can encourage diversity among views,
however, it may still incline to one mode when the target image distribution is overwhelmingly concentrated at one point. The
specified text prompt in Fig. 10 is in this case as we observe the majority of sampled images from a pre-trained diffusion
model with the corresponding prompt are the frontal views of a marble mouse.

LeftFront Back Right

A marble bust of a mouse

Figure 10. Failure case. We present four views of a failure case yielded by ESD with prompt “A marble bust of a mouse” and CFG weight
� = 0.5.


