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We provide more results, visualizations, and in-depth
discussions of the proposed T-MASS as follows
• More quantitative performance of T-MASS (Section 1).
• Discussions about stochastic text embedding (Section 2).
• Text length analysis of T-MASS (Section 3)
• More discussions on KL divergence (Section 4).

1. Performance

Post Processing Operation. We further explore the power
of propose T-MASS by evaluating upon post processing op-
eration of DSL [4]. In Table 1, we provide results under the
backbone of CLIP-ViT-B/32. In Table 2, we provide re-
sults under CLIP-ViT-B/16. Consistent performance boost
can be achieved under different datasets. For example,
DSL enables 4.1% improvement on R@1 for DiDeMo [1]
with CLIP-ViT-B/32 and 8% improvement on R@1 for VA-
TEX [13] with CLIP-ViT-B/16. Besides, we notice that the
effect of DSL varies on different datasets and backbones,
for which reason, we did not consider the post processing
operations such as DSL and QB-Norm [3] when compare
between different methods in the manuscript.

Video-to-text performance. In Table 4, we report both
text-to-video and video-to-text retrieval performance of the
proposed T-MASS with the backbone of CLIP-ViT-B/32.
For some datasets, such as DiDeMo [1] and Charades [12],
the video-to-text performance of the proposed method is
close to text-to-video performance, e.g., 1% gap on R@1.
For others, such as MSRVTT [14] and VATEX [13], video-
to-text performance of T-MASS can be even better than
text-to-video performance, notably, 13.4% gap on R@1 for
VATEX. Both of observations indicates that the proposed
method not only allows a promising text-to-video retrieval,
but also enables an accurate video-to-text retrieval. This is
because T-MASS learns the text embedding as a resilient
and flexible semantic range, facilitating the text-video rep-
resentation alignment in the embedding space.
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Larger Settings. In Table 5, we provide text-to-video
performance of T-MASS with a larger batch size of 64
on DiDeMo and LSMDC. Better performance is achieved.
Note that in the manuscript, we report the performance of
the proposed T-MASS with batch size of 32 and frame
number of 12 for all datasets. We directly report the per-
formance of other methods under their own settings. For
example, CLIP-ViP [15] uses batch size of 128 for differ-
ent datasets and UATVR [5] use batch size of 64 during
training. The comparison in the manuscript can be unfair
to the proposed method. Despite the inconsistent setting,
T-MASS achieves the state-of-the-art performance in most
cases, validating the effectiveness of the proposed design.

2. Stochastic Text Embedding
Implementation. We implement T-MASS based on X-
Pool [6], as introduced in Section 4.1. During training, we
take the text embedding t as an condition to compute the
pooled video embedding v, and then compute the symmet-
ric cross entropy between the randomly sampled stochastic
text embedding ts and text-conditioned video embedding v.
For any text-video pairs in evaluation, we still firstly com-
pute the text-conditioned video embedding v upon t, and
then randomly sample a group of stochastic text embedding
ts. We select the ts that has the highest similarity with v.
Notably, there is another choice of computing pooled video
embedding v by feeding ts in fusion module ψ(·). How-
ever, using ts in ψ(·) will bring randomness to v, leading
to: 1) if we resample v independent to ts sampling for in-
ference, the computational cost will further increase by an
order; 2) if varying v upon ts, we observe a degraded per-
formance on MSRVTT9K. Overall, we adopt t in ψ(·) fol-
lowing the original design of X-Pool.

Despite that the proposed method can introduce more
computational cost for selecting the best stochastic text em-
bedding ts during evaluation, the complexity is a linear
function of the sampling trials, i.e., O(M), which is easy to
scale and is negligible when M is small. Correspondingly,
the inference speed can be comparable to existing meth-
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Dataset DSL [4] R@1 R@5 R@10 MdR MnR

MSRVTT [14] ✗ 50.2 75.3 85.1 1.0 11.9
✓ 52.7 80.3 87.3 1.0 10.0

LSMDC [11] ✗ 28.9 48.2 57.6 6.0 43.3
✓ 30.5 51.4 60.6 5.0 40.6

DiDeMo [1] ✗ 50.9 77.2 85.3 1.0 12.1
✓ 55.0 80.9 87.5 1.0 9.7

VATEX [13] ✗ 63.0 92.3 96.4 1.0 3.2
✓ 70.6 94.6 97.7 1.0 2.4

Charades [12] ✗ 14.2 36.2 48.3 12.0 54.8
✓ 16.6 40.3 51.5 10.0 45.1

Table 1. Text-to-video performance of T-MASS with the backbone
of CLIP-ViT-B/32. “DSL” is the post processing operation.

ods by perform sampling in parallel. Since the proposed
method does not introduce large components such as diffu-
sion model [7] or temporal modeling [2, 8, 10], T-MASS is
easy to be implemented, deployed, and trained with limited
GPUs, such as a single NVIDIA A100 or A6000 GPU.

Similarity-aware Radius. In Fig. 3∼10, we provide
more visualizations about the dynamics of R. Specifically,
we plot the |R|1 between one specific query text and 1000
video candidates in MSRVTT-1K. For the relevant text-
video pairs, T-MASS can learn a very specific semantics
range (|R|1 is smallest), as shown by Fig. 3∼9. In Fig. 10,
we also provide an failing case where T-MASS fails to ac-
curately capture the semantics range given the relevant text-
video pair. We also visualize the radius R ∈ R512 for both
relevant pair (red) and irrelevant pairs in Fig. 2. Some di-
mensions may have a different scale from others. We hope
our observation can bring insights toward the future design.

Stochastic Embedding with Unlearnable Radius. We
provide more analysis on the proposed stochastic text
embedding with unlearnable radius design, i.e., R =

exp(
∑

Si

T ′ ). Notably, T-MASS with unlearnable R is not an
inference-time method since ts and R take effect through
reparameterization using Ls. To explore sampling ts with-
out learning, we implement a new baseline R w/o Ls that
directly adopts the sampling. Table 3 compares between
without and with Ls, indicating the effectiveness of Ls.

Notably, the baseline of “R w/o Ls” is sampling in the
original embedding space of X-Pool (since we still adopt
original Lce and there is no additional learnable module in-
troduced). As shown in Table 3, R w/o Ls underperforms
X-Pool, since the X-Pool’s original space is only learned for
point-to-point matching – there’s no guarantee that samples
around t could be closer to v. Also, we observe increasing
M in the original space has less effect.

3. Text Length Analysis

We analysis the effect of the text length toward the per-
formance of proposed T-MASS. Specifically, we augment
texts with the public captioner LLaVA [9] on MSRVTT-
9K (4 frames taken per video) to increase the text token

Dataset DSL [4] R@1 R@5 R@10 MdR MnR

MSRVTT [14] ✗ 52.7 77.1 85.6 1.0 10.5
✓ 55.9 80.4 89.6 1.0 9.7

LSMDC [11] ✗ 30.3 52.2 61.3 5.0 40.1
✓ 31.5 53.9 63.0 4.0 36.6

DiDeMo [1] ✗ 53.3 80.1 87.7 1.0 9.8
✓ 58.0 82.8 88.9 1.0 7.5

VATEX [13] ✗ 65.6 93.9 97.2 1.0 2.7
✓ 73.6 95.7 98.1 1.0 2.1

Charades [12] ✗ 26.7 51.7 63.9 5.0 30.0
✓ 30.1 55.1 67.0 4.0 24.2

Table 2. Text-to-video performance of T-MASS with the backbone
of CLIP-ViT-B/16. “DSL” is the post processing operation.

Method M R@1 R@5 R@10 MdR MnR
X-Pool – 46.9 72.8 82.2 2.0 14.3

R w/o Ls 1 25.6 49.1 60.9 6.0 39.1
R w/o Ls 10 37.8 65.2 77.2 3.0 18.3
R w/o Ls 20 37.5 66.0 76.1 2.0 17.2
R w/ Ls 20 48.7 74.7 83.7 2.0 12.7

Table 3. Sampling ts using unlearnable R without Ls on
MSRVTT 1K. The last line is our ablated model in Table 5.
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Figure 1. We explored KL-divergence, rather than adopting learn-
able radius design, to regularize the scale of text mass in our pre-
liminary study. We find an unfavorable performance (< 26% at
R@1) even though the KL loss term shows a tendency of conver-
gence. We adopt prior N (0, 1). An improper prior hardly makes
contribution to the text-video alignment.

length from 6.91M to 11.52M . We retrain X-Pool and
T-MASS on the augmented dataset. The {total text token
length v.s. R@1-gain} is {11.52M v.s. +3.0}, compared
with {6.91M v.s. +3.3} in Table 2 in manuscript. T-MASS
can improve X-Pool (+3.0 by R@1) on the augmented text.

4. KL Divergence
To regularize the scale of the text mass, we explored KL
divergence in our preliminary study, rather than adopting
a learnable radius modeling. We find it is hard to posit a
proper prior for the KL divergence term for two reasons:
(1) the scale of the text mass may vary for different input
texts. (2) The scale of the text mass can vary for differ-
ent dimensions in the embedding space. Due to these, we
find KL divergence regularization hardly contributes to the
alignment of text and video, yielding an unfavorable perfor-
mance, e.g., < 26% at R@1, even though the KL loss curve
has a tendency of convergence as shown in Fig. 1.



Dataset Text-to-video Video-to-text
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

MSRVTT [14] 50.2 75.3 85.1 1.0 11.9 50.9 80.2 88.0 1.0 7.4
LSMDC [11] 28.9 48.2 57.6 6.0 43.3 26.0 48.4 57.5 6.0 37.8
DiDeMo [1] 50.9 77.2 85.3 1.0 12.1 49.1 76.4 85.9 2.0 8.0
VATEX [13] 63.0 92.3 96.4 1.0 3.2 76.4 98.3 99.5 1.0 1.5

Charades [12] 14.2 36.2 48.3 12.0 54.8 13.2 37.3 48.5 11.0 56.1

Table 4. Text-to-video and video-to-text performance of proposed T-MASS. We adopt the backbone of CLIP-ViT-B/32.

Dataset Batch size R@1 R@5 R@10 MdR MnR

LSMDC [11] 32 28.9 48.2 57.6 6.0 43.3
64 29.4 50.4 58.9 5.0 41.8

DiDeMo [1] 32 50.9 77.2 85.3 1.0 12.1
64 52.0 79.1 86.6 1.0 10.8

Table 5. Text-to-video performance of proposed T-MASS with the backbone of CLIP-ViT-B/32 with larger setting.

⋯
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Figure 2. Visualization of R ∈ R512. Given the text query “women are modeling clothes”. We visualize the radius R of the relevant video
in red and provide five representative radius of irrelevant videos in blue. The L1-norm of R for the relevant video is smallest, corresponding
to a specific text semantic range (text mass). By comparison, text mass can be larger for the irrelevant pairs.
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Figure 3. Dynamics of R. We plot |R|1 for a relevant t-v pair
(347-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 4. Dynamics of R. We plot |R|1 for a relevant t-v pair
(823-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 5. Dynamics of R. We plot |R|1 for a relevant t-v pair
(455-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 6. Dynamics of R. We plot |R|1 for a relevant t-v pair
(565-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 7. Dynamics of R. We plot |R|1 for a relevant t-v pair
(740-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 8. Dynamics of R. We plot |R|1 for a relevant t-v pair
(522-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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Figure 9. Dynamics of R. We plot |R|1 for a relevant t-v pair
(98-th in MSRVTT-1K, video on the right) and the query text with
999 irrelevant videos.
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Figure 10. Dynamics of R. We plot |R|1 for a relevant t-v pair
(666-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos.
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