TOKENCOMPOSE: Text-to-Image Diffusion with Token-level Supervision

Supplementary Material

1. Pipeline Setup

We provide detailed data generation, training and inference
settings for the TOKENCOMPOSE pipeline setup in Table
1. Unless otherwise specified, experiments are run based
on this set of settings. For settings that are not reported
in Table 1, we follow the default values provided by their
respective codebases.

Setting

Value

Data Generation

CLIP Model ViT-L/14@336px [3, 15]

POS Tagger flair/pos—-english[1]

Target POS Tags NN /NNS /NNP / NNPS

G. DINO Model groundingdino_swint_ogc [2, 1 1, 12]
G. DINO Box Thres. 0.25

G. DINO Text Thres. | 0.25

SAM Model sam_hg_vit_h [3,9, 10]
Training

Resolution sp 1.4 512 x 512

Resolution sp 2.1 768 x 768

Image Processing
Batch Size

Center Crop + Resize
1

Grad. Accum. Steps 4

Grad. Ckpting. True
Train Steps sp 1.4 24000
Train Steps sp2.1 32000
Learning Rate 5e-6

LR Scheduler Constant
LR Warmup False
A for Lioken le-3

v for Lpizer Se-5

Lioken and ‘cpiISl
Clf-Free Guidance [7]

all layers in Uygig and Up
False

Inference
Resolution sp 1.4 512 x 512
Resolution sp 2.1 768 x 768
Timestep Scheduler PNDMScheduler
# Inference Steps 50
Clf-Free Guidance [7] | True
Guidance Scale 7.5

Table 1. Model choices and settings for data generation, train-
ing, and inference. We provide a comprehensive list of pipeline
details for data generation (e.g., caption selection, noun extrac-
tion and segmentation map generation), training (e.g., finetuning
the Stable Diffusion model), and inference (e.g., evaluation of our
finetuned Stable Diffusion model).

2. Conditional Downstream Metrics

As multi-category instance composition serves as a prereq-
uisite for successful downstream text-conditioned compo-
sitional generation, we conjecture that the improvements
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Figure 1. Improvement comparison of unconditional and con-
ditional downstream compositional metrics. We illustrate that
a significant margin of downstream compositional metrics is im-
proved due to enhanced capabilities of multi-category instance
composition. In this figure, we calculate the evaluation metrics
from T2I-CompBench [8] by conditioning on the successful gen-
eration of all instances mentioned in the prompts, and compare the
amount of quantitative improvement with the same metrics that are
not conditioned on successfull generation of all instances.

in downstream metrics are improved by higher chances
of generating all instances mentioned in the prompt. In
this section, we provide an additional object accuracy met-
ric in Table 2, and show that TOKENCOMPOSE improves
object accuracy in all downstream metrics being evalu-
ated. Furthermore, in Figure 1, we demonstrate how bet-
ter multi-category instance composition capabilities can im-
prove these metrics by plotting the improvement curve
from (1) a frozen Stable Diffusion to (2) a Stable Diffu-
sion finetuned with only L pjs objective, and finally to (3)
a Stable Diffusion model finetuned with both £; pys and
our grounding objectives conditioned and unconditioned on
successful generation of all instances from the composi-
tional prompts.

From the results, we observe that the improvements in all
attribute binding metrics (e.g., color, shape, texture) and the
majority of object relation metrics (e.g., spatial, complex)
are much more significant in the unconditional case than
in the conditional case. The only downstream benchmark
where the difference in improvement is insignificant is the
non-spatial compositionality. We believe that this insignif-
icance can be explained by two factors: (1) lowest amount
of improvement in object accuracy for this specific down-
stream benchmark, as shown in Table 2 and (2) relatively
low correlation between automatic scores (i.e., CLIP Score
[6, 15]) and human ratings among all compositional bench-
marks from the T2I-CompBench [8]; this indicates that the
evaluation model may have a comparably weak discrimina-
tive capability for this specific task.



Model Color  Shape Texture Spatial Non-Spat. Complex
SD 1.4
frozen 4740 2533 1527 1940 45.10 26.60
ft. w. Lopar | 5570 2849 1895  27.05 47.33 29.33
Ours ‘ 62.92 3295 2559 33.30 48.94 32.10

Table 2. Object accuracy in downstream compositional met-
rics. We calculate the object accuracy metric (i.e., success rate
of generating all instances in the prompt based on a detection
model [13]) for each of the compositional benchmarks from T2I-
CompBench [8].
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Figure 2. Approximations of the average number of tokens
with grounding objectives per training prompt. From left to
right, we show the distribution of number of tokens per caption,
number of noun tokens per caption, and number of noun tokens
that have generated segmentation maps per caption.

3. More Examples

Multi-category Instance Composition. We provide more
visualizations in Figure. 3 to illustrate capabilities of To-
kenCompose in multi-category instance composition. In
addition to being able to generate multiple categories of in-
stances successfully, we show that object affordance (e.g.,
attach, sit, support, efc) can be maintained, which indi-
cates that TokenCompose is able to implicitly learn the ba-
sic “physical rules” via the object token and segmentation
consistency constraints.

Downstream Applications. We show in Figure. 4 posi-
tive impacts in downstream applications. As expected, To-
kenCompose shows its effectiveness in tasks beyond text-
to-image generation.

Benchmark. MULTIGEN benchmark plays a crucial
role in evaluating multi-category instance composition ca-
pabilities of text-to-image models. To offer a more intuitive
sense in this compositional task, we visualize the generated
images from various prompts in this benchmark (e.g., MG
COCO Instances and MG ADE20K Instances). We use the
same latent for each comparison for fairness. The images
are presented in Figure 7.

4. Grounded COCO Dataset

As seen in Figure 2 from the main paper, we adopt a POS
Tagger and the Grounded SAM [1, 10, 11] to extract binary
segmentation maps from noun tokens from the image-text
pair dataset. We aim to expand the visualizations of the

generated data in Figure 8. Each row and column represents
a single data that the model is trained with. From the left to
the right of the data are the caption, the input image, and the
grounded binary segmentation maps.

The bold and underlined text in the caption repre-
sents noun tokens captured by the POS tagger where their
corresponding segmentation maps are extracted from the
Grounded SAM. Italicized and red fext in the caption repre-
sents noun tokens captured by the POS tagger but does not
have segmentation maps extracted from the Grounded SAM
due to the model not being able to locate the objects.

Grounded segmentation maps on the right are paired
with their correpsonding tokens. For tokens with a green

background , their segmentation maps successfully capture
the aligned contents in the image, whereas for a small frac-
tion of tokens with an orange background , their segmenta-
tion maps do not capture the aligned contents in the image.

We also provide reference on approximations (i.e., word
split by space) of (1) average number of tokens per caption,
(2) average number of noun tokens per caption, and (3) av-
erage number of noun tokens that have their corresponding
segmentation maps per caption in Figure 2. As shown in
the figure, our training dataset contains an average of 3.71
noun tokens overall and 3.21 noun tokens that have their
corresponding segmentation maps.

5. Analysis

Attention Visualizations. To gain a better understand-
ing of how incorporating grounding objectives into text-to-
image models during training affects cross-attention maps
for image reconstruction [14] & generation tasks at infer-
ence time, we provide token-level cross-attention map visu-
alizations on three axes: (1) different cross-attention layers
with various resolutions (Figure 9); (2) different heads of
the multi-head cross-attention (Figure 10; and (3) different
timesteps during the denoising process (Figure 11).

Multi-category Instance Composition Success Rate.
Given a set of compositional prompts, we calculate the
count of each category that appears in these prompts along
with images where the instance(s) of this category is/are de-
tected by a detection model [13]. We divide the number of
images that contain a specific category of the instance by the
number of prompts that contains this category to acquire the
success rate and report the numbers in Figure 12.

Failure Cases. We provide generated and detected sam-
ples for categories with low and high success rates in Fig-
ure. 5. We believe that one explanation for the poor perfor-
mance categories have variants and viewpoints with dras-
tic visual differences, so learning and generating them is
harder. Further, we aggregate patterns of common failures
in our multi-category instance composition in Figure. 6.
We believe that visual commonsense reasoning aspect of
the generative model would be an area of improvement.



Figure 3. More samples in multi-category instance composition.
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Figure 4. Downstream applications in prompt-to-prompt [5] image editing and zero-shot outpainting and inpainting.
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Figure 6. Failure case analysis in multi-category compositionality.
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Figure 7. Sampled images with prompts from our MULTIGEN benchmark. To facilitate understanding of our multi-category instance
composition benchmark as well as further qualitative comparisons among different baselines, we provide sampled images from MULTIGEN
with COCO instances as well as ADE20K instances.
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Figure 8. Grounding dataset visualization. We provide visualizations of 50 selected image-text pairs (number of noun tokens with
segmentation maps > 5) and their corresponding token-level binary segmentation maps from the training data to facilitate understanding
of our training dataset.
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Figure 9. Cross-attention map visualizations by different cross-attention layers at denoising U-Net. We visualize the cross-attention
map between a frozen Stable Diffusion [16] model and our model at the middle block and decoder layers of the denoising U-Net, where
cross-attention at these layers are trained with our grounding objectives. In the upper example, we leverage null text inversion [14] to
let two models reconstruct similar images using different latents for comparable cross-attention maps to demonstrate stronger grounding
capabilities of our model. In the lower example, we use the same initial latent for two different models to generate images to demonstrate
how stronger grounding capabilities lead to better compositionality.
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Figure 10. Cross-attention map visualizations by different cross-attention heads at the denoising U-Net. We visualize the cross-
attention map of each head at the last layer (i.e., U§4X64) of the U-Net decoder between a frozen Stable Diffusion [16] model and our
model. We use the same setting as in Figure 9 but with a different prompt for a more diverse visualization. We show that our grounding

objective allows flexibility of different heads to attend to different regions of the latent.
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Figure 11. Cross-attention map visualizations by different denoising time steps at the denoising U-Net. We visualize the cross-
attention map of the last layer (i.e., U§4X64) of the U-Net decoder between a frozen Stable Diffusion [16] model and our model at time
step 1 and every 5 steps based on a 50-step DDIM [17] scheduler. We use the same setting as in Figure 9 with a different prompt for a
more diverse visualization. We show that our grounding objective enables cross-attention of different object tokens to aggregate at different
regions of the noisy latent early during inference. This enables the model to generate different categories of instances more successfully,
leading to better multi-category instance composition capabilities.
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Figure 12. Instance generation success rate in multi-category instance composition benchmarks. We provide the success rate (from a

0-1 scale) of generating instances with our best-performing model for VISOR [4], MG-COCO, and MG-ADE20K benchmarks
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