
A. Formulation of (9)

Structural risk minimization principle minimizes the upper
bound of the true risk on unseen data distribution, where the
bound can be written as follows for a dataset containing n
samples with the probability at least 1− δ:

E(J(x)) ⩽ E(J(x)) + 2Rn(F) +

√
ln 1/δ

n
, (13)

where E(J(x)) and E(J(x)) respectively illustrate the true
expectation of the risk J for real data distribution x and
the empirical expectation of that for sampled data from x,
and Rn(F) is the Rademacher complexity over the function
class F . The SRM principle requires the data to be sampled
from i.i.d. distribution, while the latent images in selected
timesteps should be more informative and representative. In
order to extend the SRM principle in active timestep selec-
tion, we omitted x to reformulate the risk bound inequality:

E(J) ⩽ (E(J)− ET (J)) + ET (J) +R0, (14)

where E(J) and ET (J) are the true risk of all latent images

and the sampled data. R0 = 2Rn(F) +
√

ln 1/δ
n demon-

strates the complexity of the diffusion model in the reverse
process. In diffusion models, the data x consists of input
samples z and target samples y, we can rewrite the first term
of (14) as follows:

E(J)− ET (J) =

∫
g(z)p(X)dz −

∫
g(z)p(Xs)dz,

(15)
where we rewrite p(z|z ∈ X) and p(z|z ∈ Xs) as p(X)
and p(Xs) respectively for simplicity. X and Xs are the
distribution of latent images generated in all timesteps and
the selected ones respectively. As g(z) =

∫
J · p(y|z)dy is

bounded and measurable, a bounded and continuous function
ĝ(z) can guarantee the boundness of (15):

E(J)− ET (J) ⩽ sup
ĝ(z)

[

∫
g(z)p(X)dz −

∫
g(z)p(Xs)dz]

= MMD(p(X), p(Xs)),
(16)

where MMD(p(X), p(Xs)) represents the maximum mean
discrepancy between distribution p(X) and p(Xs). Finally,
we rewrite the SRM principle in the following way:

E(J) ⩽ ET (J) +MMD(p(X), p(Xs)) +R0, (17)

where we omit the data distribution x for simplicity. ET (J)
denotes the empirical risk of the latent images of selected
timesteps for noise estimation.

B. Formulation about (11)
The definition of maximal mean discrepancy can be written
as follows, where we denote MMD(p(X), p(Xs)) as M
for simplicity:

min
t

M = sup || 1

|U |
∑
xt∈U

ϵθ(xt)−
1

|S|
∑
xt∈S

ϵθ(xt)||

= sup ||Ext∈U (ϵθ(xt))− Ext∈S(ϵθ(xt))||,
(18)

where U means the full set containing all original latent and
timesteps for calibrating image selection, and | · | represents
the number of elements in the set. || · || represent for L2 norm
calculation. The upper bound of the first term of formula
(18) can be written based on the upper confidence bound
(UCB) principle as follows:

Ext∈U (ϵθ(xt)) = Ext∈S(ϵθ(xt)) + φ

√
lnN

Nt + 1
, (19)

where N and Nt denote the number of sampling times for
the tth timestep and the total sampling times in calibration
set construction respectively. φ is a constant in timestep
sampling to achieve the exploitation-exploration trade-off in

UCB principle.
√

lnN
Nt+1 denotes for uncertainty between the

distribution of the full set and the selected samples, which is
reduced as the sampling times for the tth timestep raise. N
in formula (19) is designed to further explore the timesteps
with more uncertainty, when the indeterminacy rises as tth
timestep is not selected. However, timestep t is large in dif-
fusion models and the number of selected times Nt is always
small for calculating the square root, which leads to large N
and instability of uncertainty for the calibration set construc-
tion. Therefore, we simplify the design of uncertainty and
obtain formula (11) in the paper as follows:

min
t

M =
φ

Nt + 1
∝ 1

Nt + 1
, (20)

where we expect to select latent images in the timestep with
few sampling times to further minimize the maximal mean
discrepancy with high marginal benefits.

C. Samples
Additional samples: We show more samples generated by
the 6-bit quantized LDM-4 diffusion model with different
post-training quantization methods in Figure 5 (256× 256
Church), Figure 6 (256×256 Bedroom), Figure 7 (256×256
CelebA-HQ), and Figure 8 (256 × 256 ImageNet). Com-
pared with the conventional quantization method in diffusion
models, our APQ-DM can still achieve high-quality details
in plausible images for various datasets with weights and
activations in low bitwidths, which are semblable to the full
precision ones.



(a) Full Precision (b) PTQ4DM(6-bit) (c) ADP-DM(6-bit)

Figure 5. 256× 256 LSUN-Church samples from 100 step LDMs in 6-bit with different post-training quantization methods.

(a) Full Precision (b) PTQ4DM(6-bit) (c) ADP-DM(6-bit)

Figure 6. 256× 256 LSUN-Bedroom samples from 100 step LDMs in 6-bit with different post-training quantization methods.

(a) Full Precision (b) PTQ4DM(6-bit) (c) ADP-DM(6-bit)

Figure 7. 256× 256 CelebA-HQ samples from 100 step LDMs in 6-bit with different post-training quantization methods.



Figure 8. 256× 256 ImageNet samples from 100 step LDMs in 6-bit with APQ-DM.
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